Skip to main content
Log in

Comment on “Resolving the 180° Ambiguity in Solar Vector Magnetic Field Data: Evaluating the Effects of Noise, Spatial Resolution, and Method Assumptions”

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

In a recent paper, Leka et al. (Solar Phys. 260, 83, 2009) constructed a synthetic vector magnetogram representing a three-dimensional magnetic structure defined only within a fraction of an arcsec in height. They rebinned the magnetogram to simulate conditions of limited spatial resolution and then compared the results of various azimuth disambiguation methods on the resampled data. Methods relying on the physical calculation of potential and/or non-potential magnetic fields failed in nearly the same, extended parts of the field of view and Leka et al. (Solar Phys. 260, 83, 2009) attributed these failures to the limited spatial resolution. This study shows that the failure of these methods is not due to the limited spatial resolution but due to the narrowly defined test data. Such narrow magnetic structures are not realistic in the real Sun. Physics-based disambiguation methods, adapted for solar magnetic fields extending to infinity, are not designed to handle such data; hence, they could only fail this test. I demonstrate how an appropriate limited-resolution disambiguation test can be performed by constructing a synthetic vector magnetogram very similar to that of Leka et al. (Solar Phys. 260, 83, 2009) but representing a structure defined in the semi-infinite space above the solar photosphere. For this magnetogram I find that even a simple potential-field disambiguation method manages to resolve the ambiguity very successfully, regardless of limited spatial resolution. Therefore, despite the conclusions of Leka et al. (Solar Phys. 260, 83, 2009), a proper limited-spatial-resolution test of azimuth disambiguation methods is yet to be performed in order to identify the best ideas and algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alissandrakis, C.E.: 1981, On the computation of constant alpha force-free magnetic field. Astron. Astrophys. 100, 197 – 200.

    ADS  Google Scholar 

  • Aly, J.J.: 1987, On the uniqueness of the determination of the coronal potential magnetic field from line-of-sight boundary conditions. Solar Phys. 111, 287 – 296. doi: 10.1007/BF00148521 .

    Article  ADS  Google Scholar 

  • Chiu, Y.T., Hilton, H.H.: 1977, Exact Green’s function method of solar force-free magnetic-field computations with constant alpha. I – Theory and basic test cases. Astrophys. J. 212, 873 – 885. doi: 10.1086/155111 .

    Article  ADS  Google Scholar 

  • Crouch, A.D., Barnes, G., Leka, K.D.: 2009, Resolving the azimuthal ambiguity in vector magnetogram data with the divergence-free condition: application to discrete data. Solar Phys. 260, 271 – 287. doi: 10.1007/s11207-009-9454-2 .

    Article  ADS  Google Scholar 

  • Gary, G.A.: 1989, Linear force-free magnetic fields for solar extrapolation and interpretation. Astrophys. J. Suppl. 69, 323 – 348. doi: 10.1086/191316 .

    Article  ADS  Google Scholar 

  • Georgoulis, M.K.: 2005, A new technique for a routine azimuth disambiguation of solar vector magnetograms. Astrophys. J. Lett. 629, 69 – 72. doi: 10.1086/444376 .

    Article  ADS  Google Scholar 

  • Georgoulis, M.K., LaBonte, B.J.: 2007, Magnetic energy and helicity budgets in the active region solar corona. I. Linear force-free approximation. Astrophys. J. 671, 1034 – 1050. doi: 10.1086/521417 .

    Article  ADS  Google Scholar 

  • Georgoulis, M.K., Raouafi, N., Henney, C.J.: 2008, Automatic active-region identification and azimuth disambiguation of the SOLIS/VSM full-disk vector magnetograms. In: Howe, R., Komm, R.W., Balasubramaniam, K.S., Petrie, J.G.D. (eds.) Subsurface and Atmospheric Influences on Solar Activity, ASP Conf. Ser. 383, 107 – 114.

    Google Scholar 

  • Harvey, J.W.: 1969, Magnetic Fields Associated with Solar Active-Region Prominences, PhD thesis, University of Colorado.

  • Henney, C.J., Keller, C.U., Harvey, J.W., Georgoulis, M.K., Hadder, N.L., Norton, A.A., Raouafi, N., Toussaint, R.M.: 2009, SOLIS Vector Spectromagnetograph: status and science. ASP Conf. Ser. 405, 47 – 50.

    ADS  Google Scholar 

  • Keller, C.U., Harvey, J.W., Giampapa, M.S.: 2003, SOLIS: an innovative suite of synoptic instruments. In: Keil, S.L., Avakyan, S.V. (eds.) Innovative Telescopes and Instrumentation for Solar Astrophysics, Proc. SPIE 4853, 194 – 204.

    Google Scholar 

  • Leka, K.D., Metcalf, T.R.: 2003, Active-region magnetic structure observed in the photosphere and chromosphere. Solar Phys. 212, 361 – 378. doi: 10.1023/A:1022996404064 .

    Article  ADS  Google Scholar 

  • Leka, K.D., Barnes, G., Crouch, A.D., Metcalf, T.R., Gary, G.A., Jing, J., Liu, Y.: 2009, Resolving the 180-degree ambiguity in solar vector magnetic field data: evaluating the effects of noise, spatial resolution, and method assumptions. Solar Phys. 260, 83 – 108. doi: 10.1007/s11207-009-9440-8 .

    Article  ADS  Google Scholar 

  • Li, J., Amari, T., Fan, Y.: 2007, Resolution of the 180-deg ambiguity for inverse horizontal magnetic field configurations. Astrophys. J. 654, 675 – 686. doi: 10.1086/509062 .

    Article  ADS  Google Scholar 

  • Lites, B.W., Elmore, D.F., Streander, K.V.: 2001, The solar-B spectro-polarimeter. In: Sigwarth, M. (ed.) Advanced Solar Polarimetry – Theory, Observation, and Instrumentation, ASP Conf. Ser. 236, 33 – 40.

    Google Scholar 

  • Longcope, D.W., Welsch, B.T.: 2000, A model for the emergence of a twisted magnetic flux tube. Astrophys. J. 545, 1089 – 1100. doi: 10.1086/317846 .

    Article  ADS  Google Scholar 

  • Metcalf, T.R.: 1994, Resolving the 180-degree ambiguity in vector magnetic field measurements: The ‘minimum’ energy solution. Solar Phys. 155, 235 – 242. doi: 10.1007/BF00680593 .

    Article  ADS  Google Scholar 

  • Metcalf, T.R., Leka, K.D., Barnes, G., Lites, B.W., Georgoulis, M.K., Pevtsov, A.A., Balasubramaniam, K.S., Gary, G.A., Jing, J., Li, J., Liu, Y., Wang, H.N., Abramenko, V., Yurchyshyn, V., Moon, Y.: 2006, An overview of existing algorithms for resolving the 180-degree ambiguity in vector magnetic fields: quantitative tests with synthetic data. Solar Phys. 237, 267 – 296. doi: 10.1007/s11207-006-0170-x .

    Article  ADS  Google Scholar 

  • Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: 1953, Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087 – 1092. doi: 10.1063/1.1699114 .

    Article  ADS  Google Scholar 

  • Parker, E.N.: 1996, Inferring mean electric currents in unresolved fibril magnetic fields. Astrophys. J. 471, 485 – 488. doi: 10.1086/177983 .

    Article  ADS  Google Scholar 

  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: 1992, Numerical Recipes in FORTRAN77. The Art of Scientific Computing, 326 – 334.

    Google Scholar 

  • Sakurai, T.: 1982, Green’s function methods for potential magnetic fields. Solar Phys. 76, 301 – 321. doi: 10.1007/BF00170988 .

    Article  ADS  Google Scholar 

  • Sakurai, T.: 1989, Computational modeling of magnetic fields in solar active regions. Space Sci. Rev. 51, 11 – 48. doi: 10.1007/BF00226267 .

    ADS  Google Scholar 

  • Scherrer, P.H., SDO/HMI Team: 2002, The helioseismic and magnetic imager for the Solar Dynamics Observatory. Bull. Am. Astron. Soc. 34, 735.

    ADS  Google Scholar 

  • Schmidt, H.U.: 1964, On the observable effects of magnetic energy storage and release connected with solar flares. In: Hess, W.N. (ed.) The Physics of Solar Flares, NASA SP-50, 107 – 114.

    Google Scholar 

  • Tsuneta, S., Ichimoto, K., Katsukawa, Y., Nagata, S., Otsubo, M., Shimizu, T., Suematsu, Y., Nakagiri, M., Noguchi, M., Tarbell, T., Title, A., Shine, R., Rosenberg, W., Hoffmann, C., Jurcevich, B., Kushner, G., Levay, M., Lites, B., Elmore, D., Matsushita, T., Kawaguchi, N., Saito, H., Mikami, I., Hill, L.D., Owens, J.K.: 2008, The Solar Optical Telescope for the Hinode mission: an overview. Solar Phys. 249, 167 – 196. doi: 10.1007/s11207-008-9174-z .

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manolis K. Georgoulis.

Additional information

M.K. Georgoulis is also a Marie Curie Fellow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georgoulis, M.K. Comment on “Resolving the 180° Ambiguity in Solar Vector Magnetic Field Data: Evaluating the Effects of Noise, Spatial Resolution, and Method Assumptions”. Sol Phys 276, 423–440 (2012). https://doi.org/10.1007/s11207-011-9819-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-011-9819-1

Keywords

Navigation