Skip to main content

Advertisement

Log in

Large-Scale Variation of Solar Wind Electron Properties from Quasi-Thermal Noise Spectroscopy: Ulysses Measurements

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The transport of energy in space plasmas, especially in the solar wind, is far from being understood. Measuring the temperature of the electrons and their non-thermal properties is essential to understand the transport properties in collisionless plasmas. Quasi-thermal noise spectroscopy is a reliable tool for measuring the electron temperature accurately since it is less sensitive to the spacecraft perturbations than particle detectors. We apply this method to Ulysses radio data obtained during the first pole-to-pole fast latitude scan in the high-speed solar wind, using a kappa function to describe the electron velocity distribution. We deduce the variations with heliocentric distance between 1.5 and 2.3 AU in the fast solar wind at high latitude in terms of three fitting parameters: the electron density varies as n eR −1.96±0.08, the electron temperature as T eR −0.53±0.15, and the kappa index of the distribution remains constant at κ=2.0±0.2. These observations agree with the predictions of the exospheric theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bame, S.J., McComas, D.J., Barraclough, B.L., Phillips, J.L., Sofaly, K.J., Chavez, J.C., Goldstein, B.E., Sakurai, R.K.: 1992, The ULYSSES solar wind plasma experiment. Astron. Astrophys. Suppl. 92, 237.

    ADS  Google Scholar 

  • Bougeret, J., Kaiser, M.L., Kellogg, P.J., Manning, R., Goetz, K., Monson, S.J., Monge, N., Friel, L., Meetre, C.A., Perche, C., Sitruk, L., Hoang, S.: 1995, Waves: the radio and plasma wave investigation on the Wind spacecraft. Space Sci. Rev. 71, 231.

    Article  ADS  Google Scholar 

  • Chateau, Y.F., Meyer-Vernet, N.: 1991, Electrostatic noise in non-Maxwellian plasmas: generic properties and “kappa” distributions. J. Geophys. Res. 96, 5825.

    Article  ADS  Google Scholar 

  • Feldman, W.C., Asbridge, J.R., Bame, S.J., Gosling, J.T., Lemons, D.S.: 1978, Electron heating within interaction zones of simple high-speed solar wind streams. J. Geophys. Res. 83, 5297.

    Article  ADS  Google Scholar 

  • Feldman, W.C., Asbridge, J.R., Bame, S.J., Gosling, J.T., Lemons, D.S.: 1979, The core electron temperature profile between 0.5 and 1.0 AU in the steady-state high speed solar wind. J. Geophys. Res. 84, 4463.

    Article  ADS  Google Scholar 

  • Issautier, K.: 2009, Diagnostics of the solar wind plasma. In: Cargill, P., Vlahos, L. (eds.) Turbulence in Space Plasmas, Lecture Notes in Physics 778, Springer, Berlin, 223.

    Chapter  Google Scholar 

  • Issautier, K., Moncuquet, M., Hoang, S.: 2004, Solar wind electron parameters from ULYSSES/URAP quasi-thermal noise measurements at solar maximum. Solar Phys. 221, 351.

    Article  ADS  Google Scholar 

  • Issautier, K., Meyer-Vernet, N., Moncuquet, M., Hoang, S.: 1998, Solar wind radial and latitudinal structure—Electron density and core temperature from ULYSSES thermal noise spectroscopy. J. Geophys. Res. 103, 1969.

    Article  ADS  Google Scholar 

  • Issautier, K., Meyer-Vernet, N., Moncuquet, M., Hoang, S., McComas, D.J.: 1999, Quasi-thermal noise in a drifting plasma: theory and application to solar wind diagnostic on Ulysses. J. Geophys. Res. 104, 6691.

    Article  ADS  Google Scholar 

  • Issautier, K., Le Chat, G., Meyer-Vernet, N., Moncuquet, M., Hoang, S., MacDowall, R.J., McComas, D.J.: 2008, Electron properties of high-speed solar wind from polar coronal holes obtained by Ulysses thermal noise spectroscopy: Not so dense, not so hot. Geophys. Res. Lett. 35, L19101.

    Article  ADS  Google Scholar 

  • Lamy, H., Pierrard, V., Maksimovic, M., Lemaire, J.F.: 2003, A kinetic exospheric model of the solar wind with a nonmonotonic potential energy for the protons. J. Geophys. Res. 108(A1), SSH 13-1.

    Article  Google Scholar 

  • Le Chat, G., Issautier, K., Meyer-Vernet, N., Zouganelis, I., Maksimovic, M., Moncuquet, M.: 2009, Quasi-thermal noise in space plasma: “kappa” distributions. Phys. Plasmas 16, 102903.

    Article  ADS  Google Scholar 

  • Le Chat, G., Issautier, K., Meyer-Vernet, N., Zouganelis, I., Moncuquet, M., Hoang, S.: 2010, Quasi-thermal noise spectroscopy: preliminary comparison between kappa and sum of two Maxwellian distributions. In: Maksimovic, M., Issautier, K., Meyer-Vernet, N., Moncuquet, M., Pantellini, F. (eds.) Twelfth International Solar Wind Conference, AIP Conf. Proc. 1216, 316.

    Google Scholar 

  • Maksimovic, M., Gary, S.P., Skoug, R.M.: 2000, Solar wind electron suprathermal strength and temperature gradients: Ulysses observations. J. Geophys. Res. 105, 18337.

    Article  ADS  Google Scholar 

  • Maksimovic, M., Hoang, S., Bougeret, J.L.: 1995, Properties of the solar wind electrons between 1 and 3.3 AU from ULYSSES thermal noise measurements. In: Winterhalter, D., Gosling, J.T., Habbal, S.R., Kurth, W.S., Neugebauer, M. (eds.) Eighth International Solar Wind Conference, AIP Conf. Proc. 382, 297.

    Google Scholar 

  • Marsch, E., Thieme, K.M., Rosenbauer, H., Pilipp, W.G.: 1989, Cooling of solar wind electrons inside 0.3 AU. J. Geophys. Res. 94, 6893.

    Article  ADS  Google Scholar 

  • Meyer-Vernet, N.: 1994, On the thermal noise ‘temperature’ in an anisotropic plasma. Geophys. Res. Lett. 21, 397.

    Article  ADS  Google Scholar 

  • Meyer-Vernet, N., Issautier, K.: 1998, Electron temperature in the solar wind: Generic radial variation from kinetic collisionless models. J. Geophys. Res. 103, 29705.

    Article  ADS  Google Scholar 

  • Meyer-Vernet, N., Perche, C.: 1989, Tool kit for antennae and thermal noise near the plasma frequency. J. Geophys. Res. 94, 2405.

    Article  ADS  Google Scholar 

  • Meyer-Vernet, N., Mangeney, A., Maksimovic, M., Pantellini, F., Issautier, K.: 2003, Some basic aspects of solar wind acceleration. In: Velli, M., Bruno, R., Malara, F., Bucci, B. (eds.) Solar Wind Ten, AIP Conf. Proc. 679, 263.

    Google Scholar 

  • Montgomery, M.D., Bame, S.J., Hundhausen, A.J.: 1968, Solar wind electrons: Vela 4 measurements. J. Geophys. Res. 73, 4999.

    Article  ADS  Google Scholar 

  • Ogilvie, K.W., Scudder, J.D.: 1978, The radial gradients and collisional properties of solar wind electrons. J. Geophys. Res. 83, 3776.

    Article  ADS  Google Scholar 

  • Ogilvie, K.W., Chornay, D.J., Fritzenreiter, R.J., Hunsaker, F., Keller, J., Lobell, J., Miller, G., Scudder, J.D., Sittler, E.C. Jr., Torbert, R.B., Bodet, D., Needell, G., Lazarus, A.J., Steinberg, J.T., Tappan, J.H., Mavretic, A., Gergin, E.: 1995, SWE, a comprehensive plasma instrument for the Wind Spacecraft. Space Sci. Rev. 71, 55.

    Article  ADS  Google Scholar 

  • Phillips, J.L., Bame, S.J., Gary, S.P., Gosling, J.T., Scime, E.E., Forsyth, R.J.: 1995, Radial and meridional trends in solar wind thermal electron temperature and anisotropy: ULYSSES. Space Sci. Rev. 72, 109.

    Article  ADS  Google Scholar 

  • Pierrard, V., Lazar, M.: 2010, Kappa distributions: theory and applications in space plasmas. Solar Phys. 267, 153.

    Article  ADS  Google Scholar 

  • Pilipp, W.G., Muehlhaeuser, K., Miggenrieder, H., Rosenbauer, H., Schwenn, R.: 1990, Large-scale variations of thermal electron parameters in the solar wind between 0.3 and 1 AU. J. Geophys. Res. 95, 6305.

    Article  ADS  Google Scholar 

  • Rostoker, N.: 1961, Fluctuations of a plasma (I). Nucl. Fusion 1, 101.

    Article  Google Scholar 

  • Scime, E.E., Bame, S.J., Feldman, W.C., Gary, S.P., Phillips, J.L., Balogh, A.: 1994, Regulation of the solar wind electron heat flux from 1 to 5 AU: ULYSSES observations. J. Geophys. Res. 99, 23401.

    Article  ADS  Google Scholar 

  • Sittler, E.C. Jr., Scudder, J.D.: 1980, An empirical polytrope law for solar wind thermal electrons between 0.45 and 4.76 AU—Voyager 2 and Mariner 10. J. Geophys. Res. 85, 5131.

    Article  ADS  Google Scholar 

  • Sittler, E.C. Jr., Scudder, J.D., Jessen, J.: 1981, Radial variation of solar wind thermal electrons between 1.36 AU and 2.25 AU—VOYAGER-2. In: Rosenbauer, H. (ed.) Solar Wind 4, Springer, New York, 257.

    Google Scholar 

  • Stone, R.G., Bougeret, J.L., Caldwell, J., Canu, P., de Conchy, Y., Cornilleau-Wehrlin, N., Desch, M.D., Fainberg, J., Goetz, K., Goldstein, M.L., Harvey, C.C., Hoang, S., Howard, R., Kaiser, M.L., Kellogg, P.J., Klein, B., Knoll, R., Lecacheux, A., Lengyel-Frey, D., MacDowall, R.J., Manning, R., Meetre, C.A., Meyer, A., Monge, N., Monson, S., Nicol, G., Reiner, M.J., Steinberg, J.L., Torres, E., de Villedary, C., Wouters, F., Zarka, P.: 1992, The unified radio and plasma wave investigation. Astron. Astrophys. Suppl. 92, 291.

    ADS  Google Scholar 

  • Štverák, Š., Trávníček, P., Maksimovic, M., Marsch, E., Fazakerley, A.N., Scime, E.E.: 2008, Electron temperature anisotropy constraints in the solar wind. J. Geophys. Res. 113, A03103.

    Article  Google Scholar 

  • Zouganelis, I.: 2008, Measuring suprathermal electron parameters in space plasmas: Implementation of the quasi-thermal noise spectroscopy with kappa distributions using in situ Ulysses/URAP radio measurements in the solar wind. J. Geophys. Res. 113, A08111.

    Article  Google Scholar 

  • Zouganelis, I., Maksimovic, M., Meyer-Vernet, N., Lamy, H., Issautier, K.: 2004, A transonic collisionless model of the solar wind. Astrophys. J. 606, 542.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Le Chat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Chat, G., Issautier, K., Meyer-Vernet, N. et al. Large-Scale Variation of Solar Wind Electron Properties from Quasi-Thermal Noise Spectroscopy: Ulysses Measurements. Sol Phys 271, 141–148 (2011). https://doi.org/10.1007/s11207-011-9797-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-011-9797-3

Keywords

Navigation