Skip to main content
Log in

Trans-Equatorial Loop System Arising from Coronal Hole Boundaries through Interactions between Active Regions and Coronal Holes

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

It is not clear how trans-equatorial loop systems (TLSs) are formed, although they have been observed often with Yohkoh/SXT. We focus here on a TLS that appeared on 27 May 1998. Yokoyama and Masuda (Solar Phys. 254, 285, 2009) proposed a new scenario for the formation mechanism of the TLS. In this scenario, they pointed out the importance of magnetic interaction between an active region and a coronal hole to make “strong-seed magnetic fields” before a transient (bright and short-lived) trans-equatorial loop was created. The main aims of this study are to verify the scenario and to make the TLS formation mechanism clear, based on observational data. Yohkoh/SXT images, SOHO/MDI magnetograph data, and Kitt Peak coronal-hole maps were mainly used for our analyses. We investigated the TLS in detail from the time that there were no signatures of the TLS to its clear appearance. The following results are obtained: i) an active region emerged in the vicinity of a coronal-hole boundary, ii) the coronal-hole boundary retreated during the period when the active region was developing, iii) temporal variations of soft X-ray intensities were roughly synchronized between the coronal-hole boundary and a trans-equatorial region, and iv) new closed loops were observed in soft X-rays clearly at the coronal-hole boundary. Since i), ii), iii), and iv) are just what we expect in the scenario of YM2009, the scenario found support. We conclude that the TLS was originating with large-scale magnetic fields of the coronal-hole boundary through magnetic reconnection between the active region and a coronal hole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Babcock, H.W.: 1961, Astrophys. J. 133, 752.

    Article  ADS  Google Scholar 

  • Baker, D., van Driel-Gesztelyi, L., Attrill, G.D.R.: 2007, Astron. Nachr. 328, 773.

    Article  ADS  Google Scholar 

  • Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, Solar Phys. 162, 357.

    Article  ADS  Google Scholar 

  • Chen, P.F., Shibata, K.: 2000, Astrophys. J. 545, 524.

    Article  ADS  Google Scholar 

  • Chen, J., Bao, S., Zhang, H.: 2006, Solar Phys. 235, 281.

    Article  ADS  Google Scholar 

  • Crooker, N.U., Gosling, J.T., Kahler, S.W.: 2002, J. Geophys. Res. 107, 1028.

    Article  Google Scholar 

  • Domingo, V., Fleck, B., Poland, A.I.: 1995, Solar Phys. 162, 1.

    Article  ADS  Google Scholar 

  • Fárník, F., Švestka, Z.: 2002, Solar Phys. 206, 143.

    Article  ADS  Google Scholar 

  • Golub, L., Deluca, E., Austin, G., Bookbinder, J., Caldwell, D., Cheimets, P., Cirtain, J., Cosmo, M., Reid, P., Sette, A., Weber, M., Sakao, T., Kano, R., Shibasaki, K., Hara, H., Tsuneta, S., Kumagai, K., Tamura, T., Shimojo, M., McCracken, J., Carpenter, J., Haight, H., Siler, R., Wright, E., Tucker, J., Rutledge, H., Barbera, M., Peres, G., Varisco, S.: 2007, Solar Phys. 243, 63.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Mikić, Z., Maia, D., Alexander, D., Cremades, H., Kaufmann, P., Tripathi, D., Wang, Y.-M.: 2006, Space Sci. Rev. 123, 303.

    Article  ADS  Google Scholar 

  • Harra, L.K., Matthews, S.A., van Driel-Gesztelyi, L.: 2003, Astrophys. J. 598, L59.

    Article  ADS  Google Scholar 

  • Harvey, K.L., Recely, F.: 2002, Solar Phys. 211, 31.

    Article  ADS  Google Scholar 

  • Jiang, J., Choudhuri, A.R., Wang, J.: 2007, Solar Phys. 245, 19.

    Article  ADS  Google Scholar 

  • Kano, R., Sakao, T., Hara, H., Tsuneta, S., Matsuzaki, K., Kumagai, K., Shimojo, M., Minesugi, K., Shibasaki, K., Deluca, E.E., Golub, L., Bookbinder, J., Caldwell, D., Cheimets, P., Cirtain, J., Dennis, E., Kent, T., Weber, M.: 2008, Solar Phys. 249, 263.

    Article  ADS  Google Scholar 

  • Khan, J.I., Hudson, H.S.: 2000, Geophys. Res. Lett. 27, 1083.

    Article  ADS  Google Scholar 

  • Kosugi, T., Matsuzaki, K., Sakao, T., Shimizu, T., Sone, Y., Tachikawa, S., Hashimoto, T., Minesugi, K., Ohnishi, A., Yamada, T., Tsuneta, S., Hara, H., Ichimoto, K., Suematsu, Y., Shimojo, M., Watanabe, T., Shimada, S., Davis, J.M., Hill, L.D., Owens, J.K., Title, A.M., Culhane, J.L., Harra, L.K., Doschek, G.A., Golub, L.: 2007, Solar Phys. 243, 3.

    Article  ADS  Google Scholar 

  • Ogawara, Y., Takano, T., Kato, T., Kosugi, T., Tsuneta, S., Watanabe, T., Kondo, I., Uchida, Y.: 1991, Solar Phys. 136, 1.

    Article  ADS  Google Scholar 

  • Pevtsov, A.A.: 2000, Astrophys. J. 531, 553.

    Article  ADS  Google Scholar 

  • Pevtsov, A.A.: 2004, In: Stepanov, A.V., Benevolenskaya, E.E., Kosovichev, A.G. (eds.) Multi-Wavelength Investigations of Solar Activity, IAU Symp. 223, Cambridge University Press, Cambridge, 521.

    Google Scholar 

  • Saito, T., Sun, W., Deehr, C.S., Akasofu, S.-I.: 2007, J. Geophys. Res. 112, A05102.

    Article  Google Scholar 

  • Sakurai, T., Uchida, Y.: 1977, Solar Phys. 52, 397.

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., Rosenberg, W., Springer, L., Tarbell, T.D., Title, A., Wolfson, C.J., Zayer, I., MDI Engineering Team: 1995, Solar Phys. 162, 129.

    Article  ADS  Google Scholar 

  • Shibata, K., Masuda, S., Shimojo, M., Hara, H., Yokoyama, T., Tsuneta, S., Kosugi, T., Ogawara, Y.: 1995, Astrophys. J. 451, L83.

    Article  ADS  Google Scholar 

  • Shimojo, M., Shibata, K.: 2000, Astrophys. J 542, 1100.

    Article  ADS  Google Scholar 

  • Shimojo, M., Shibata, K., Yokoyama, T., Hori, K.: 2001, Astrophys. J. 550, 1051.

    Article  ADS  Google Scholar 

  • Shimojo, M., Narukage, N., Kano, R., Sakao, T., Tsuneta, S., Shibasaki, K., Cirtain, J.W., Lundquist, L.L., Reeves, K.K., Savcheva, A.: 2007, Publ. Astron. Soc. Japan 59, S745.

    Google Scholar 

  • Švestka, Z., Skrieger, A.S., Chase, R.C., Howard, R.: 1977, Solar Phys. 52, 69.

    Article  ADS  Google Scholar 

  • Tsuneta, S.: 1996a, Astrophys. J. 456, L63.

    ADS  Google Scholar 

  • Tsuneta, S.: 1996b, Astrophys. J. 456, 840.

    Article  ADS  Google Scholar 

  • Tsuneta, S., Acton, L., Bruner, M., Lemen, J., Brown, W., Caravalho, R., Catura, R., Freeland, S., Jurcevich, B., Owens, J.: 1991, Solar Phys. 136, 37.

    Article  ADS  Google Scholar 

  • van Driel-Gesztelyi, L.: 2006, In: Bothmer, V., Handy, A.A. (eds.) Solar Activity and Its Magnetic Origin, IAU Symp. 223, Cambridge University, Cambridge, 205.

    Google Scholar 

  • van Driel-Gesztelyi, L., Attrill, G.D.R., Démoulin, P., Mandrini, C.H., Harra, L.K.: 2008, Ann. Geophys. 26, 3077.

    Article  ADS  Google Scholar 

  • Wang, Y.M., Hawley, S.H., Sheeley, N.R. Jr.: 1996, Science 271, 464.

    Article  ADS  Google Scholar 

  • Wang, J., Zhang, Y., Zhou, G., Harra, L.K., Williams, D.R., Jiang, Y.: 2007, Solar Phys. 244, 75.

    Article  ADS  Google Scholar 

  • Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O.C., Plunkett, S.P., Rich, N.B., Howard, R.A.: 2004, J. Geophys. Res. 109, A07105.

    Article  Google Scholar 

  • Yokoyama, M., Masuda, S.: 2009, Solar Phys. 254, 285. (YM2009).

    Article  ADS  Google Scholar 

  • Yokoyama, T., Shibata, K.: 1995, Nature 375, 42.

    Article  ADS  Google Scholar 

  • Zhou, G.P., Wang, J.X., Zhang, J.: 2006, Astron. Astrophys. 445, 1133.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Yokoyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yokoyama, M., Masuda, S. Trans-Equatorial Loop System Arising from Coronal Hole Boundaries through Interactions between Active Regions and Coronal Holes. Sol Phys 263, 135–152 (2010). https://doi.org/10.1007/s11207-010-9525-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-010-9525-4

Keywords

Navigation