Skip to main content
Log in

Predicting Solar Flares by Data Assimilation in Avalanche Models

I. Model Design and Validation

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Data assimilation techniques, developed in the past two decades mainly for weather prediction, produce better forecasts by taking advantage of both theoretical/numerical models and real-time observations. In this paper, we explore the possibility of applying the four-dimensional variational data assimilation (4D-VAR) technique to the prediction of solar flares. We do so in the context of a continuous version of the classical cellular-automaton-based self-organized critical avalanche models of solar flares introduced by Lu and Hamilton (Astrophys. J. 380, L89, 1991). Such models, although a priori far removed from the physics of magnetic reconnection and magnetohydrodynamical evolution of coronal structures, nonetheless reproduce quite well the observed statistical distribution of flare characteristics. We report here on a large set of data assimilation runs on synthetic energy release time series. Our results indicate that, despite the unpredictable (and unobservable) stochastic nature of the driving/triggering mechanism within the avalanche model, 4D-VAR succeeds in producing optimal initial conditions that reproduce adequately the time series of energy released by avalanches and flares. This is an essential first step toward forecasting real flares.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, J.: 2003, In: Predictability of a Data Assimilation/Prediction System, NCAR Data Assimilation Initiative, Boulder.

    Google Scholar 

  • Aschwanden, M., Charbonneau, P.: 2002, Astrophys. J. 566, L59.

    Article  ADS  Google Scholar 

  • Aschwanden, M., Tarbell, T., Nightingale, R., et al.: 2000, Astrophys. J. 535, 1047.

    Article  ADS  Google Scholar 

  • Bak, P.: 1996, How Nature Works: The Science of Self-Organized Criticality, Springer, New York.

    MATH  Google Scholar 

  • Bak, P., Tang, C., Wiesenfeld, K.: 1987, Phys. Rev. Lett. 59, 381.

    Article  ADS  MathSciNet  Google Scholar 

  • Bertino, L., Evensen, G., Wackernagel, H.: 2002, Inverse Probl. 18, 1.

    Article  MATH  ADS  Google Scholar 

  • Carton, J., Chepurin, G., Cao, X.: 2000, J. Phys. Oceanogr. 30, 311.

    Article  ADS  Google Scholar 

  • Charbonneau, P., McIntosh, S., Liu, H.-L., Bogdan, T.: 2001, Solar Phys. 203, 321.

    Article  ADS  Google Scholar 

  • Courtier, P., Talagrand, O.: 1990, Tellus 42A, 531.

    ADS  Google Scholar 

  • Cressman, G.: 1959, Mon. Weather Rev. 87, 367.

    Article  ADS  Google Scholar 

  • Daley, R.: 1991, Atmospheric Data Analysis, Cambridge Atmospheric and Space Science Series, Cambridge University Press, Cambridge.

    Google Scholar 

  • Dennis, B.: 1985, Solar Phys. 100, 465.

    Article  ADS  Google Scholar 

  • Ehrendorfer, M.: 1992, Quart. J. Roy. Meteorol. Soc. 118, 673.

    Article  ADS  Google Scholar 

  • Errico, R.: 1997, Bull. Am. Meteorol. Soc. 78, 2577.

    Article  ADS  Google Scholar 

  • Eymin, C., Fournier, A.: 2005, In: Abstract Book/CD IAGA 2005, IAGA2005, Toulouse.

  • Georgoulis, M., Vlahos, L.: 1998, Astron. Astrophys. 336, 721.

    ADS  Google Scholar 

  • González, Á., Vázquez-Prada, M., Gómez, J., Pacheco, A.: 2006, Tectonophysics 424, 319.

    Article  ADS  Google Scholar 

  • Isliker, H., Anastasiadis, A., Vlahos, L.: 2000, Astron. Astrophys. 363, 1134.

    ADS  Google Scholar 

  • Jensen, H.: 1998, Self-Organized Criticality, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Kadanoff, L., Nagel, S., Wu, L., Zhou, S.: 1989, Phys. Rev. A 39, 6524.

    Article  ADS  Google Scholar 

  • Kalnay, E.: 2003, Atmospheric Modeling, Data Assimilation and Predictability, Cambridge University Press, Cambridge.

    Google Scholar 

  • Kantha, L., Clayson, C.: 2000, Numerical Models of Oceans and Oceanic Processes, International Geophysics Series 66, Academic Press, New York.

    Google Scholar 

  • Le Dimet, F.-X., Talagrand, O.: 1986, Tellus 38A, 97.

    Article  ADS  Google Scholar 

  • Lions, J.: 1968, Contrôle Optimal de Systèmes Gouvernés par des Équations aux Dérivées Partielles, Dunod, Paris.

    MATH  Google Scholar 

  • Liu, H.-L., Charbonneau, P., Pouquet, A., Bogdan, T., McIntosh, S.: 2002, Phys. Rev. E 66, 056111.

    ADS  Google Scholar 

  • Lu, E., Hamilton, R.: 1991, Astrophys. J. 380, L89.

    Article  ADS  Google Scholar 

  • Lu, E., Hamilton, R., McTiernan, J., Bromund, K.: 1993, Astrophys. J. 412, 841.

    Article  ADS  Google Scholar 

  • Mitchell, A., Griffiths, D.: 1980, The Finite Difference Method in Partial Differential Equations, Wiley, Toronto.

    MATH  Google Scholar 

  • Moore, A., Arango, H., Lorenzo, E. et al.: 2004, Ocean Model. 7, 227.

    Article  ADS  Google Scholar 

  • Nichols, N.: 2003, In: Swinbank, R., Shutyaev, V., Lahoz, W. (eds.) Data Assimilation for the Earth System, Kluwer, Dordrecht, 9.

    Google Scholar 

  • Norman, J., Charbonneau, P., McIntosh, S., Liu, H.-L.: 2001, Astrophys. J. 557, 891.

    Article  ADS  Google Scholar 

  • Parker, E.: 1983, Astrophys. J. 264, 635.

    Article  ADS  Google Scholar 

  • Parker, E.: 1988, Astrophys. J. 330, 474.

    Article  ADS  Google Scholar 

  • Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: 1992, Numerical Recipes in FORTRAN: The Art of Scientific Computing, Cambridge University Press, New York.

    Google Scholar 

  • Rundle, J., Klein, W., Tiampo, K., Donnellan, A., Fox, G.: 2003, In: Computational Science – ICCS 2003, Lecture Notes in Computer Science 2659, Springer, Berlin/Heidelberg, 827.

  • Sanders, B., Katopodes, N.: 1999, J. Irrig. Drainage Eng. 125, 287.

    Article  Google Scholar 

  • Sanders, B., Katopodes, N.: 2000, J. Eng. Mech. 126, 909.

    Article  Google Scholar 

  • Schrijver, C., DeRosa, M.: 2003, Solar Phys. 212, 165.

    Article  ADS  Google Scholar 

  • Schröter, J., Seiler, U., Wenzel, M.: 1993, J. Phys. Oceanogr. 23, 925.

    Article  ADS  Google Scholar 

  • Siscoe, G., Solomon, S.: 2006, Space Weather 4, S04002.

    Article  Google Scholar 

  • Talagrand, O., Courtier, P.: 1987, Quart. J. Roy. Meteorol. Soc. 113, 1311.

    Article  ADS  Google Scholar 

  • Wheatland, M.: 2000, Astrophys. J. 536, L109.

    Article  ADS  Google Scholar 

  • Wiltberger, M., Baker, D.: 2006, Space Sci. Rev. 124, 217.

    Article  ADS  Google Scholar 

  • Zirker, J., Cleveland, F.: 1993, Solar Phys. 145, 119.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Bélanger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bélanger, E., Vincent, A. & Charbonneau, P. Predicting Solar Flares by Data Assimilation in Avalanche Models. Sol Phys 245, 141–165 (2007). https://doi.org/10.1007/s11207-007-9009-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-007-9009-3

Keywords

Navigation