Skip to main content
Log in

Correlation between Expansion Rate of the Coronal Magnetic Field and Solar Wind Speed in a Solar Activity Cycle

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Thirteen synoptic maps of expansion rate of the coronal magnetic field (CMF; RBR) calculated by the so-called ‘potential model’ are constructed for 13 Carrington rotations from the maximum phase of solar activity cycle 22 through the maximum phase of cycle 23. Similar 13 synoptic maps of solar wind speed (SWS) estimated by interplanetary scintillation observations are constructed for the same 13 Carrington rotations as the ones for the RBR. The correlation diagrams between the RBR and the SWS are plotted with the data of these 13 synoptic maps. It is found that the correlation is negative and high in this time period. It is further found that the linear correlation is improved if the data are classified into two groups by the magnitude of radial component of photospheric magnetic field, |Bpho r |; group 1, 0.0 G ≦ |B r pho| < 17.8 G and group 2, 17.8 G ≦ |B r pho|. There exists a strong negative correlation between the RBR and the SWS for the group 1 in contrast with a weak negative correlation for the group 2. Group 1 has a double peak in the density distribution of data points in the correlation diagram; a sharp peak for high-speed solar wind and a low peak for low-speed solar wind. These two peaks are located just on the axis of maximum variance of data points in the correlation diagram. This result suggests that the solar wind consists of two major components and both the high-speed and the low-speed winds emanating from weak photospheric magnetic regions are accelerated by the same mechanism in the course of solar activity cycle. It is also pointed out that the SWS can be estimated by the RBR of group 1 with an empirical formula obtained in this paper during the entire solar activity cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschuler, M. D., Levine, R. H., Stix, M., and Harvey, J. W.: 1977, Solar Phys. 51, 345.

    Google Scholar 

  • Altschuler, M. D. and Newkirk Jr., G.: 1969, Solar Phys. 9, 131.

    Google Scholar 

  • Arge, C. N. and Pizzo, V. J.: 2000, J. Geophys. Res. 105, 10465.

    Google Scholar 

  • Asai, K., Kojima, M., Tokumaru, M., Yokobe, A., Jackson, B. V., and Manoharan, P. K.: 1998, J. Geophys. Res. 103, 1991.

    Google Scholar 

  • Hakamada, K.: 1995, Solar Phys. 159, 89.

    Google Scholar 

  • Hakamada, K.: 1998, Solar Phys. 181, 73.

    Google Scholar 

  • Hakamada, K. and Kojima, M.: 1994, Solar Phys. 153, 419.

    Google Scholar 

  • Hakamada, K. and Kojima, M.: 1999, Solar Phys. 187, 115.

    CAS  Google Scholar 

  • Hakamada, K., Kojima, M., and Kakinuma, T.: 1991, J. Geophys. Res. 96, 5397.

    Google Scholar 

  • Hakamada, K., Kojima, M., Tokumaru, M., Ohmi, T., Yokobe, A., and Fujiki, K.: 2002, Solar Phys. 207, 173.

    Google Scholar 

  • Hewish, A., Scott, P. F., and Wills, D.: 1964, Nature 203, 1214.

    Google Scholar 

  • Hoeksema, J. T. and Scherrer, P. H.: 1986, {The Solar Magnetic Field – 1976 through 1985}, Report UAG-94, Boulder, Colorado: World Data Center A for Solar-Terrestial Physics, NOAA.

  • Jackson, B. V., Hick, P. L., Kojima, M., and A. Yokobe: 1998, J. Geophys. Res. 103, 12049.

    Google Scholar 

  • Kojima, M., Fujiki, K., Ohmi, T., Tokumaru, M., Yokobe, A., and Hakamada, K.: 2001, J. Geophys. Res. 106, 15677.

    Google Scholar 

  • Kojima, M. and Kakinuma, T.: 1990, Space Sci. Rev. 53, 173.

    Google Scholar 

  • Kojima, M., Tokumaru, M., Watanabe, H., Yokobe, A., Asai, K., Jackson, B. V., and Hick, P. L.: 1998, J. Geophys. Res. 103, 1981.

    Google Scholar 

  • Levine, R. H.: 1978, J. Geophys. Res. 83, 4193.

    Google Scholar 

  • Levine, R. H., Altschuler, M. D., and Harvey, J. W.: 1977, J. Geophys. Res. 82, 1061.

    Google Scholar 

  • Ohmi, T., Kojima, M., Yokobe, A., Tokumaru, M., Fujiki, K., and Hakamada, K.: 2001, J. Geophys. Res. 106, 24923.

    Google Scholar 

  • Riesebieter, W. and Neubauer, F. M.: 1979, Solar Phys. 63, 127.

    Google Scholar 

  • Schatten, K. H., Wilcox, J. M., and Ness, N. F.: 1969, Solar Phys. 9, 442.

    Google Scholar 

  • Wang, Y.-M. and Sheeley Jr., N. R.: 1990, Astrophys. J. 355, 726.

    Article  Google Scholar 

  • Wang, Y.-M. and Sheeley Jr., N. R.: 1992, Astrophys. J. 392, 310.

    Article  CAS  Google Scholar 

  • Wang, Y.-M. and Sheeley Jr., N. R.: 2003, Astrophys. J. 587, 818.

    Article  Google Scholar 

  • Wang, Y.-M., Sheeley Jr., N. R., Phillips, J. L., and Goldstein, B. E.: 1997, Astrophys. J. 488.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuyuki Hakamada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hakamada, K., Kojima, M., Ohmi, T. et al. Correlation between Expansion Rate of the Coronal Magnetic Field and Solar Wind Speed in a Solar Activity Cycle. Sol Phys 227, 387–399 (2005). https://doi.org/10.1007/s11207-005-3304-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-005-3304-7

Keywords

Navigation