Skip to main content
Log in

How to Classify Countries Based on Their Level of Development

  • Published:
Social Indicators Research Aims and scope Submit manuscript

There are two kinds of people in the world: those who divide the world into two kinds of people, and those who don’t.

—Robert Benchley.

Abstract

The paper analyzes how the United Nations Development Programme, the World Bank, the International Monetary Fund and the World Trade Organization classify countries based on their level of development. These systems are found lacking in clarity with regard to their underlying rationale. The paper argues that a country classification system based on a transparent, data-driven methodology is preferable to one based on judgment or ad hoc rules. Such an alternative methodology is developed and used to construct classification systems using a variety of proxies for development attainment. The methodology provides a way to construct a linear approximation of a Lorenz curve such that the difference between the linear approximation and the actual Lorenz curve is minimized. The linear segments represent different categories of countries (e.g., low development and high development countries). The methodology has wider applicability; it can be used whenever there is a need to construct a classification system of relatively few categories from a large heterogeneous sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Twenty-three years hence similar language is still in use in the World Bank. On page xxiii in the 2012 WDI, one learns that “low- and middle-income economies are sometimes referred to as developing economies. The term is used for convenience; it is not intended to imply that all economies in the group are experiencing similar development or that other economies have reached a preferred or final stage of development.”

  2. This section draws on information available on WTO’s web-site (WTO.org) supplemented with direct inquiry of WTO staff.

  3. Lifetime income is defined as income times longevity. The variable shows the expected lifetime income of a newborn at a 0 % discount rate under the assumption of no future income growth. The use of a positive discount rate will shift the measure more toward a simple per capita income measure.

References

  • Atkinson, A. B. (1970). On the measurement of inequality. Journal of Economic Theory, 2, 244–263.

    Article  Google Scholar 

  • Becker, G. S., Philipson, T. J., & Soares, R. R. (2005). The quantity and quality of life and the evolution of world inequality. American Economic Review, 95(1), 277–291.

    Article  Google Scholar 

  • Bourguignon, F., & Morrison, C. (2002). Inequality among the world citizens: 1820–1992. American Economic Review, 92(4), 727–744.

    Article  Google Scholar 

  • Dalton, H. (1920). The measurement of the inequality of incomes. The Economic Journal, 30(119), 348–361.

    Article  Google Scholar 

  • de Vries, M. G. (1985). The International Monetary Fund 1972–78: Cooperation on trial. Washington: International Monetary Fund.

    Google Scholar 

  • International Monetary Fund. World Economic Outlook (Washington, D.C., various issues).

  • IMF (2010) Selected Decisions and Selected Documents of the International Monetary Fund, Thirty-fifth Issue (Washington).

  • Nielsen, L. (2011) Classifications of Countries Based on Their Level of Development: How it is Done and How it Could be Done. IMF Working Paper 11/31.

  • Pearson, L. B., et al. (1969). Partners in development: Report of the commission on international development. New York: Praeger.

    Google Scholar 

  • Quah, D. T. (1996). Twin peaks: Growth and convergence in models of distribution dynamics. Economic Journal, 106, 1045–1055.

    Article  Google Scholar 

  • Quah, D. T. (1997). Empirics for growth and distribution: Stratification, polarization, and convergence clubs. Journal of Economic Growth, 2, 27–59.

    Article  Google Scholar 

  • Pritchett, L. (1997). Divergence, big time (pp. 3–17). XI: Journal of Economics Perspectives.

    Google Scholar 

  • Sala-i-Martin, X. (1996). Regional cohesion: Evidence an theories of regional growth and convergence. European Economic Review, 40, 1325–1352.

    Article  Google Scholar 

  • Sen, A. (1999). Development as freedom. New York: Random House.

    Google Scholar 

  • United Nations Development Programme. Human development report. New York: Oxford University Press, various issues).

  • World Bank. World Development Indicators (Washington, D.C., various issues).

Download references

Acknowledgments

Special thanks are due to Russell Kincaid who provided extensive commentary on earlier drafts. I would also like to thank Pedro Conceicao, Sarwat Jahan, Namsuk Kim, Heloisa Marone, Samar Maziad, Prachi Mishra, Catherine Pattillo, Barry Potter, Martin Ravallion, Luca Ricci, Francisco Rodriguez, Mick Silver, Eric Swanson, and Yanchun Zhang for useful comments and inputs. The usual disclaimer applies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynge Nielsen.

Appendices

Appendix 1

The sufficient second order conditions are that

$$ \frac{{\partial^{2} E_{3} }}{{\partial x_{0}^{2} }} = \frac{{x_{1} L^{\prime \prime} (x_{0} )}}{2} > 0 $$
$$ \frac{{\partial^{2} E_{3} }}{{\partial x_{1}^{2} }} = \frac{{(1 - x_{0} )L^{\prime \prime} (x_{1} )}}{2} > 0.$$

These conditions are met because \( L(x) \) is strictly convex. An additional necessary second order condition is that the determinant of the Hessian matrix is non-negative:

$$ \left| {\begin{array}{*{20}c} {\frac{{\partial^{2} E_{3} }}{{\partial x_{0}^{2} }}} & {\frac{{\partial^{2} E_{3} }}{{\partial x_{1} \partial x_{0} }}} \\ {\frac{{\partial^{2} E_{3} }}{{\partial x_{0} \partial x_{1} }}} & {\frac{{\partial^{2} E_{3} }}{{\partial x_{1}^{2} }}} \\ \end{array} } \right| = \left| {\begin{array}{*{20}c} {\frac{{x_{1} L^{\prime \prime} (x_{0} )}}{2}} & {\frac{{L^{\prime \prime} (x_{0} ) - L^{\prime \prime} (x_{1} )}}{2}} \\ {\frac{{L^{\prime} (x_{0} ) - L^{\prime} (x_{1} )}}{2}} & {\frac{{(1 - x_{0} )L^{\prime \prime} (x_{1} )}}{2}} \\ \end{array} } \right| \ge^{?} 0 $$

This is equivalent to evaluating the sign of the following expression:

$$ x_{1} (1 - x_{0} )L^{\prime \prime} (x_{0} )L^{\prime \prime} (x_{1} ) - (L^{\prime} (x_{0} ) - L^\prime (x_{1} ))^{2} $$

When the first order conditions are satisfied, the second derivatives are given by:

$$ L^{\prime \prime} (x_{0} ) = \frac{{L\prime (x_{1} )x_{1} - L(x_{1} )}}{{x_{1}^{2} }} = \frac{{\frac{{1 - L(x_{0} )}}{{1 - x_{0} }}x_{1} - L(x_{1} )}}{{x_{1}^{2} }} = \frac{{1 - L(x_{0} )}}{{(1 - x_{0} )x_{1} }} - \frac{{L(x_{1} )}}{{x_{1}^{2} }} $$
$$ L^{\prime \prime} (x_{1} ) = \frac{{ - L\prime (x_{0} )(1 - x_{0} ) + 1 - L(x_{0} )}}{{(1 - x_{0} )^{2} }} = \frac{{ - \frac{{L(x_{1} )}}{{x_{1} }}(1 - x_{0} ) + 1 - L(x_{0} )}}{{(1 - x_{0} )^{2} }} = - \frac{{L(x_{1} )}}{{(1 - x_{0} )x_{1} }} + \frac{{1 - L(x_{0} )}}{{(1 - x_{0} )^{2} }} $$

Therefore, the first part of the expression can be rewritten as follows:

$$ \begin{aligned} &(1 - x_{0} )x_{1} L^{\prime \prime} (x_{0} )L^{\prime \prime} (x_{1} ) \\ & \quad = (1 - x_{0} )x_{1} \left\{ {\frac{{1 - L(x_{0} )}}{{(1 - x_{0} )x_{1} }} - \frac{{L(x_{1} )}}{{x_{1}^{2} }}} \right\}\left\{ { - \frac{{L(x_{1} )}}{{(1 - x_{0} )x_{1} }} + \frac{{1 - L(x_{0} )}}{{(1 - x_{0} )^{2} }}} \right\} \\ & \quad = \left\{ {1 - L(x_{0} ) - \frac{{L(x_{1} )(1 - x_{0} )}}{{x_{1} }}} \right\}\left\{ { - \frac{{L(x_{1} )}}{{(1 - x_{0} )x_{1} }} + \frac{{1 - L(x_{0} )}}{{(1 - x_{0} )^{2} }}} \right\} \\ & \quad = - \frac{{L(x_{1} )}}{{(1 - x_{0} )x_{1} }} + \frac{{1 - L(x_{0} )}}{{(1 - x_{0} )^{2} }} + \frac{{L(x_{0} )L(x_{1} )}}{{(1 - x_{0} )x_{1} }} - \frac{{L(x_{0} )[1 - L(x_{0} )]}}{{(1 - x_{0} )^{2} }} + \frac{{L^{2} (x_{1} )}}{{x_{1}^{2} }} - \frac{{L(x_{1} )[1 - L(x_{0} )]}}{{(1 - x_{0} )x_{1} }} \\ & \quad = \frac{{ - L(x_{1} ) + L(x_{0} )L(x_{1} ) - L(x_{1} )[1 - L(x_{0} )]}}{{(1 - x_{0} )x_{1} }} + \frac{{1 - L(x_{0} ) - L(x_{0} )[1 - L(x_{0} )]}}{{(1 - x_{0} )^{2} }} + \frac{{L^{2} (x_{1} )}}{{x_{1}^{2} }} \\ &\quad = \frac{{ - L(x_{1} )[1 - L(x_{0} )] - L(x_{1} )[1 - L(x_{0} )]}}{{(1 - x_{0} )x_{1} }} + \frac{{1 - L(x_{0} ) - L(x_{0} ) + L^{2} (x_{0} )}}{{(1 - x_{0} )^{2} }} + \frac{{L^{2} (x_{1} )}}{{x_{1}^{2} }} \\ & \quad = - 2\frac{{L(x_{1} )}}{{x_{1} }}\frac{{1 - L(x_{0} )}}{{1 - x_{0} }} + \frac{{(1 - L(x_{0} ))^{2} }}{{(1 - x_{0} )^{2} }} + \frac{{L^{2} (x_{1} )}}{{x_{1}^{2} }} \\ & \quad = \left[ {\frac{{L(x_{1} )}}{{x_{1} }} - \frac{{1 - L(x_{0} )}}{{1 - x_{0} }}} \right]^{2} \\ \end{aligned} $$

As the first part of the expression is equal to the second part, the determinant of the Hessian matrix is zero, and all necessary second order conditions are met. The corner solution is when \( x_{0} = 0 \wedge x_{1} = 1 \). That point, \( E_{3} (0,1) = E_{1} \), maximizes the error. The interior point where the first order conditions are met is therefore a minimum.

Appendix 2

In a taxonomy with N categories, the error term associated with that taxonomy consists of the sum of N triangles and N−1 rectangles less the area under the Lorenz curve. The areas of the triangles are as follows:

$$ T_{0} = \frac{1}{2}x_{0} L(x_{0} ) $$
$$ T_{1} = \frac{1}{2}(x_{1} - x_{0} )(L(x_{1} ) - L(x_{0} )) = \frac{1}{2}x_{1} L(x_{1} ) - \frac{1}{2}x_{1} L(x_{0} ) - \frac{1}{2}x_{0} L(x_{1} ) + \frac{1}{2}x_{0} L(x_{0} ) $$
$$ T_{2} = \frac{1}{2}(x_{2} - x_{1} )(L(x_{2} ) - L(x_{1} )) = \frac{1}{2}x_{2} L(x_{2} ) - \frac{1}{2}x_{2} L(x_{1} ) - \frac{1}{2}x_{1} L(x_{2} ) + \frac{1}{2}x_{1} L(x_{1} ) $$
$$ T_{n - 2} = \frac{1}{2}(x_{n - 2} - x_{n - 3} )(L(x_{n - 2} ) - L(x_{n - 3} )) = \frac{1}{2}x_{n - 2} L(x_{n - 2} ) - \frac{1}{2}x_{n - 2} L(x_{n - 3} ) - \frac{1}{2}x_{n - 3} L(x_{n - 2} ) + \frac{1}{2}x_{n - 3} L(x_{n - 3} ) $$
$$ T_{n - 1} = \frac{1}{2}(1 - x_{n - 2} )(1 - L(x_{n - 2} )) = \frac{1}{2} - \frac{1}{2}L(x_{n - 2} ) - \frac{1}{2}x_{n - 2} + \frac{1}{2}x_{n - 2} L(x_{n - 2} ) $$

Therefore, the sum of the areas of the triangles is

$$ \sum\limits_{i = 0}^{n - 1} {T_{i} } = \sum\limits_{i = 0}^{n - 2} {x_{i} L(x_{i} ) - \frac{1}{2}\sum\limits_{i = 0}^{n - 3} {x_{i + 1} L(x_{i} ) - \frac{1}{2}\sum\limits_{i = 0}^{n - 3} {x_{i} L(x_{i + 1} )} } } - \frac{1}{2}L(x_{n - 2} ) - \frac{1}{2}x_{n - 2} + \frac{1}{2} $$

The areas of the \( N - 1 \) rectangles are as follows:

$$ R_{0} = (x_{1} - x_{0} )L(x_{0} ) = x_{1} L(x_{0} ) - x_{0} L(x_{0} ) $$
$$ R_{1} = (x_{2} - x_{1} )L(x_{1} ) = x_{2} L(x_{1} ) - x_{1} L(x_{1} ) $$
$$ R_{2} = (x_{3} - x_{2} )L(x_{2} ) = x_{3} L(x_{2} ) - x_{2} L(x_{2} ) $$
$$ R_{n - 3} = (x_{n - 2} - x_{n - 3} )L(x_{n - 3} ) = x_{n - 2} L(x_{n - 3} ) - x_{n - 2} L(x_{n - 2} ) $$
$$ R_{n - 2} = (1 - x_{n - 2} )L(x_{n - 2} ) = L(x_{n - 2} ) - x_{n - 2} L(x_{n - 2} ) $$

Therefore, the sum of the areas of the rectangles is

$$ \sum\limits_{i = 0}^{n - 2} {R_{i} } = \sum\limits_{i = 0}^{n - 3} {x_{i + 1} L(x_{i} ) + L(x_{n - 2} ) - \sum\limits_{i = 0}^{n - 2} {x_{i} L(x_{i} )} } $$

The general form for the error term for n categories is therefore given as:

$$ \begin{aligned} E_{n} & = \sum\limits_{i = 0}^{n - 1} {T_{i} } + \sum\limits_{i = 0}^{n - 2} {R_{i} } - \int\limits_{0}^{1} {L(x)} \\ & = \sum\limits_{i = 0}^{n - 2} {x_{i} L(x_{i} ) - \frac{1}{2}\sum\limits_{i = 0}^{n - 3} {x_{i + 1} L(x_{i} ) - \frac{1}{2}\sum\limits_{i = 0}^{n - 3} {x_{i} L(x_{i + 1} )} } } - \frac{1}{2}L(x_{n - 2} ) - \frac{1}{2}x_{n - 2} + \frac{1}{2} \\ & \quad + \sum\limits_{i = 0}^{n - 3} {x_{i + 1} L(x_{i} ) + L(x_{n - 2} ) - \sum\limits_{i = 0}^{n - 2} {x_{i} L(x_{i} )} } - \int\limits_{0}^{1} {L(x)} \\ & = \frac{1}{2}\sum\limits_{i = 0}^{n - 3} {x_{i + 1} L(x_{i} ) - \frac{1}{2}\sum\limits_{i = 0}^{n - 3} {x_{i} L(x_{i + 1} )} } + \frac{1}{2}L(x_{n - 2} ) - \frac{1}{2}x_{n - 2} + \frac{1}{2} - \int\limits_{0}^{1} {L(x)} \\ \end{aligned} $$

By defining \( x_{n - 1} \equiv L(x_{n - 1} ) \equiv 1, \) and recalling the definition of \( E_{1} , \) the following more compact formulation obtains:

$$ E_{n} = E_{1} + \frac{1}{2}\sum\limits_{i = 0}^{n - 2} {x_{i + 1} L(x_{i} ) - \frac{1}{2}\sum\limits_{i = 0}^{n - 2} {x_{i} L(x_{i + 1} )} } $$

The first order conditions are as follows:

$$ \left( \begin{array} {l} \frac{{\partial E_{n} }}{{\partial x_{0} }} \hfill \\ \frac{{\partial E_{n} }}{{\partial x_{1} }} \hfill \\ \frac{{\partial E_{n} }}{{\partial x_{2} }} \hfill \\ \vdots \hfill \\ \frac{{\partial E_{n} }}{{\partial x_{n - 2} }} \hfill \\ \end{array} \right) = \frac{1}{2}\left( \begin{array} {l} x_{1} L^\prime (x_{0} ) - L(x_{1} ) \hfill \\ L(x_{0} ) + x_{2} L^\prime (x_{1} ) - x_{0} L^\prime (x_{1} ) - L(x_{2} ) \hfill \\ L(x_{1} ) + x_{3} L^\prime (x_{2} ) - x_{1} L^\prime (x_{2} ) - L(x_{3} ) \hfill \\ \vdots \hfill \\ L(x_{n - 3} ) + L^\prime (x_{n - 2} ) - x_{n - 3} L^\prime (x_{n - 2} ) - 1 \hfill \\ \end{array} \right) = 0 \Leftrightarrow \left( \begin{array} {l} L^\prime (x_{0} ) \hfill \\ L^\prime (x_{1} ) \hfill \\ L^\prime (x_{2} ) \hfill \\ \vdots \hfill \\ L^\prime (x_{n - 2} ) \hfill \\ \end{array} \right) = \left( \begin{array} {l} \frac{{L(x_{1} )}}{{x_{1} }} \hfill \\ \frac{{L(x_{2} ) - L(x_{0} )}}{{x_{2} - x_{0} }} \hfill \\ \frac{{L(x_{3} ) - L(x_{1} )}}{{x_{3} - x_{1} }} \hfill \\ \vdots \hfill \\ \frac{{1 - L(x_{n - 3} )}}{{1 - x_{n - 3} }} \hfill \\ \end{array} \right) $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nielsen, L. How to Classify Countries Based on Their Level of Development. Soc Indic Res 114, 1087–1107 (2013). https://doi.org/10.1007/s11205-012-0191-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11205-012-0191-9

Keywords

Navigation