Skip to main content
Log in

Laboratory Investigation of Deformation and Strength Characteristics of Saline Frozen Silty Sand

  • EXPERIMENTAL INVESTIGATIONS
  • Published:
Soil Mechanics and Foundation Engineering Aims and scope

A series of triaxial compressive strength tests was conducted to investigate the effect of Na 2 SO 4 and confining pressure on the deformation and strength characteristics of frozen silty sand at 6°C. The initial elastic modulus increased with increases in the salt content, whereas the confining pressure had only a slight effect. An increase in the confining pressure resulted in an increase in strength. The results illustrated that the cohesion of the frozen soil initially increased and then decreased with increase in the Na2SO4 content, whereas the internal friction angle as well as the strength exhibited a decrease followed by an increase with increase in the Na2SO4 content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Bragg and O. B. Andersland, "Strain rate, temperature, and sample size effects on compression and tensile properties of frozen sand," Eng. Geol., 18, 35-46 (1981).

    Article  Google Scholar 

  2. R. R. Goughnour and O. B. Andersland, "Mechanical properties of a sand-ice system," Am. Soc. Civil Eng. J. Soil Mech. (1968).

  3. O. B. Andersland and I. Ainouri, "Time-dependent strength behavior of frozen soils," J. Soil Mech. Found. Div., 96 (SM4), 1249-1265 (1970).

    Google Scholar 

  4. Y. L. Zhu, J. Y. Zhang, and W.W. Peng, "Constitutive relations of frozen soil in uniaxial compression," J. Glaciol. Geocryol., 34, 657-663 (1992).

    Google Scholar 

  5. W. Ma, , Z. W. Wu, X. X. Chang, and J. Wang, "Analysis of microstructural changes in frozen sandy soil under confining pressures using scanning electronic microscope," J. Glaciol. Geocryol., 17, 152-158 (1995).

    Google Scholar 

  6. H. P. Li, Y. L. Zhu, J. B. Zhang, and C. Lin, "Effects of temperature, strain rate and dry density on compressive strength of saturated frozen clay," Cold Regions Sci. Technol., 39, 39-45 (2004).

    Article  Google Scholar 

  7. D. Y. Wang, W. Ma, X. X. Chang, and A. Wang, "Study on the resistance to deformation of artificially frozen soil in deep alluvium," Cold Regions Sci. Technol., 42, 194-200 (2005).

    Article  Google Scholar 

  8. G. Z. Tang and X.H. Wang, "Effect of temperature control on a tunnel in permafrost," Tunnel. Underground Space Technol., 22, 483-488 (2007).

    Article  Google Scholar 

  9. J. L. Qi and W. Ma, "A new criterion for strength of frozen sand under quick triaxial compression considering effect of confining pressure," Acta Geotech., 2, 221-226 (2007).

    Article  Google Scholar 

  10. Y. M. Lai, S. Y. Li, J. L. Qi, Z. H. Gao, and X. Chang, "Strength distributions of warm frozen clay and its stochastic damage constitutive model," Cold Regions Sci. Technol., 53, 200-215 (2008).

    Article  Google Scholar 

  11. S. Shoop, R. Affleck, R. Haehnel, and V. Janoo, "Mechanical behavior modeling of thaw-weakened soil," Cold Regions Sci. Technol., 52, 191-206 (2008).

    Article  Google Scholar 

  12. N. Ogata, M. Yasuda, and T. Kataoka, "Effects of salt concentration on strength and creep behavior of artificially frozen soils," Cold Regions Sci. Technol., 8, 139-153 (1983).

    Article  Google Scholar 

  13. G. M. Pharr and P. S. Godavarti, "A comparison of the creep behavior of saline ice and frozen saline Ottawa sand at −8°C," Cold Regions Sci. Technol., 14, 273-279 (1987).

    Article  Google Scholar 

  14. A. Brouchkov, "Frozen saline soil of the Arctic coast: their distribution and engineering properties," Proc. of the Eighth International Conf. on Permafrost, Zurich, Switzerland, 7, 95-100 (2003).

  15. H. Bing and P. He, "Influence of freeze-thaw cycles on physical and mechanical properties of salty soil," J. Geotech. Eng., 31, 1958-1962 (2009).

    Google Scholar 

  16. C. L. Wang, Q. Xie, C. X. Jiang, and Q. Hu, "Analysis of thermal characteristics and mechanical properties of salty soil in frozen area of Qinghai-Tibet railway," Rock Soil Mech., 30, 836-839 (2009).

    Google Scholar 

  17. J. F. Nixon and G. Lem, "Creep and strength testing of frozen saline fine-grained soils," Can. Geotech. J., 21, 518-529 (1984).

    Article  Google Scholar 

  18. E. G. Hivon and D. C. Sego, "Strength of frozen saline soils," Can. Geotech. J., 32, 336-354 (1995).

    Article  Google Scholar 

  19. H. Bing and W. Ma, "Experimental study of freezing point of saline soil," J. Glaciol. Geocryol., 33, 1106-1113 (2011).

    Google Scholar 

  20. Y. S. Deng, Y. B. Pu, and C. L. Zhou, "Experimental study of structure change of saline soils due to freezing," J. Glaciol. Geocryol., 30, 632-640 (2008).

    Google Scholar 

  21. C. S. Yang, P. He, G. D. Cheng, and H. Bing, "Uniaxial compressive strength of frozen saline silty clay," Eng. Mech., 23, 144-148 (2006).

    Google Scholar 

  22. C. S. Yang, P. He, G. D. Cheng, S. Zhao, and Y. S. Deng, "Study of stress-strain relationships and strength characteristics of saturated saline frozen silty clay," Rock Soil Mech., 29, 3282-3286 (2008).

    Google Scholar 

  23. J. Chen, D. Q. Li, H. Bing et al., "The experimental study on the uniaxial compressive strength of frozen silt with different salt content," Eng. Mech., 30, 18-23 (2013).

    Google Scholar 

  24. E. Chamberlain, C. Groves, and R. Perham, "The mechanical behavior of frozen earth materials under high pressure triaxial test conditions," Geotechnique, 22, 469-483 (1972).

    Article  Google Scholar 

  25. A. M. Fish, "Strength of frozen soil under a combined stress state," Proc. of the Sixth International Symposium on Ground Freezing, Beijing, China, 1, 135-145 (1991).

    Google Scholar 

  26. W. Ma, Z. W. Wu, L. X. Zhang, and X. Chang, "Analyses of process on the strength decrease in frozen soils under high confining pressures," Cold Regions Sci. Technol., 29, 1-7 (1999).

    Article  Google Scholar 

  27. V. R. Parameswaran and S. J. Jones, "Triaxial testing of frozen sand," J. Glaciol., 27, 147-155 (1981).

    Article  Google Scholar 

  28. Y. M. Lai, H. B. Cheng, Z. H. Gao, S. Zhang, and X. Chang, "Stress-strain relationships and nonlinear Mohr strength criterion of frozen sand clay," Rock Mech. Rock Eng., 26, 1612-1617 (2007).

    Google Scholar 

  29. X. T. Xu, Y. M. Lai, Y. H. Dong, and J. Qi, "Laboratory investigation on strength and deformation characteristics of ice-saturated frozen sandy soil," Cold Regions Sci. Technol., 69, 98-104 (2011).

    Article  Google Scholar 

  30. X. L. Sun, R. Wang, M. J. Hu, and J. H. Hu, "Triaxial strength and deformation properties of frozen silty clay under confining pressure," Rock Soil Mech., 26, 1623-1627 (2005).

    Google Scholar 

  31. E. Asghari, D. G. Toll, and S. M. Haeri, "Triaxial behavior of a cemented gravely sand, Tehran alluvium," Geotech. Geol. Eng., 21, 1-28 (2003).

    Article  Google Scholar 

  32. E. A. Mohamedzein and M. H. Aboud, "Compressibility and shear strength of a residual soil," Geotech. Geol. Eng., 24, 1385-1401 (2006).

    Article  Google Scholar 

  33. A. R. Estabragh and A.A. Javadi, "Shear strength behavior of unsaturated silty soil," Experimental Unsaturated Soil Mechanics, Springer, 153-159 (2007).

  34. S. De and P. K. Basudhar, "Steady state strength behavior of Yamuna sand," Geotech. Geol. Eng., 26, 237-250 (2008).

    Article  Google Scholar 

  35. Y. Erzin and I. Yilmaz, "A case study of crushing resistance of Anatolian sands at lower and higher density," Bull. Eng. Geol. Environ., 67, 71-77 (2008).

    Article  Google Scholar 

  36. X. S. Wan, Y. M. Lai, and C. Wang, "Experimental study on the freezing temperatures of saline silty soils," Permafrost Periglac. Process., 26, 175-187 (2015).

    Article  Google Scholar 

  37. Z. L. Liu, H. S. Li, and Y. L. Zhu, "Damage characteristics and micro-crack damage of frozen soil under uniaxial compression," J. Dalian Univ. Technol., 42, 223-227 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Osnovaniya, Fundamenty i Mekhanika Gruntov, No. 2, pp. 22-28, March-April, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, K., Chen, X. & Chen, J. Laboratory Investigation of Deformation and Strength Characteristics of Saline Frozen Silty Sand . Soil Mech Found Eng 54, 102–109 (2017). https://doi.org/10.1007/s11204-017-9441-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11204-017-9441-9

Navigation