Skip to main content
Log in

Asymptotic growth of trajectories of multifractional Brownian motion, with statistical applications to drift parameter estimation

  • Published:
Statistical Inference for Stochastic Processes Aims and scope Submit manuscript

Abstract

We construct the least-square estimator for the unknown drift parameter in the multifractional Ornstein–Uhlenbeck model and establish its strong consistency in the non-ergodic case. The proofs are based on the asymptotic bounds with probability 1 for the rate of the growth of the trajectories of multifractional Brownian motion (mBm) and of some other functionals of mBm, including increments and fractional derivatives. As the auxiliary results having independent interest, we produce the asymptotic bounds with probability 1 for the rate of the growth of the trajectories of the general Gaussian process and some functionals of it, in terms of the covariance function of its increments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ayache A, Cohen S, Véhel JL (2000) The covariance structure of multifractional Brownian motion, with application to long range dependence. In: Proceedings 2000 IEEE international conference on acoustics, speech, and signal processing – ICASSP’00, vol 6, pp 3810–3813

  • Azmoodeh E, Morlanes JI (2015) Drift parameter estimation for fractional Ornstein-Uhlenbeck process of the second kind. Statistics 49(1):1–18

    Article  MathSciNet  MATH  Google Scholar 

  • Belfadli R, Es-Sebaiy K, Ouknine Y (2011) Parameter estimation for fractional Ornstein-Uhlenbeck processes: non-ergodic case. Front Sci Eng 1(1):1–16

    Google Scholar 

  • Benassi A, Jaffard S, Roux D (1997) Gaussian processes and pseudodifferential elliptic operators. Rev Math Iberoam 13(1):19–89

    Article  MATH  Google Scholar 

  • Buldygin V, Kozachenko Y (2000) Metric characterization of random variables and random processes. AMS, American Mathematical Society, Providence

    MATH  Google Scholar 

  • El Machkouri M, Es-Sebaiy K, Ouknine Y (2016) Least squares estimator for non-ergodic Ornstein-Uhlenbeck processes driven by Gaussian processes. J Korean Stat Soc 45(3):329–341

  • Fernique X (1964) Continuité des processus Gaussiens. C R Acad Sci Paris 258:6058–6060

    MathSciNet  MATH  Google Scholar 

  • Fernique X (1975) Regularité des trajectoires des fonctions aléatoires gaussiennes. In: École d’Été de Probabilités de Saint-Flour, IV-1974 (Lecture notes in mathematics), vol 480. Springer, Berlin, pp 1–96

  • Hu Y, Nualart D (2010) Parameter estimation for fractional Ornstein-Uhlenbeck processes. Stat Probab Lett 80(11–12):1030–1038

    Article  MathSciNet  MATH  Google Scholar 

  • Kleptsyna M, Le Breton A (2002) Statistical analysis of the fractional Ornstein-Uhlenbeck type process. Stat Inference Stoch Process 5(3):229–248

    Article  MathSciNet  MATH  Google Scholar 

  • Kozachenko Y, Melnikov A, Mishura Y (2015) On drift parameter estimation in models with fractional Brownian motion. Statistics 49(1):35–62

    Article  MathSciNet  MATH  Google Scholar 

  • Kubilius K, Mishura Y, Ralchenko K, Seleznjev O (2015) Consistency of the drift parameter estimator for the discretized fractional Ornstein-Uhlenbeck process with Hurst index \(H\in (0,\frac{1}{2})\). Electron J Stat 9(2):1799–1825

    Article  MathSciNet  MATH  Google Scholar 

  • Lifshits M (2012) Lectures on Gaussian processes. Springer briefs in mathematics. Springer, Heidelberg

    Book  Google Scholar 

  • Mishura Y, Ralchenko K (2014) On drift parameter estimation in models with fractional Brownian motion by discrete observations. Austrian J Stat 43(3):218–228

    Article  Google Scholar 

  • Mishura Y, Ralchenko K, Seleznev O, Shevchenko G (2014) Asymptotic properties of drift parameter estimator based on discrete observations of stochastic differential equation driven by fractional Brownian motion. In: Modern stochastics and applications. Springer optimization and its applications, vol 90. Springer, Cham, pp 303–318

  • Piterbarg VI (1996) Asymptotic methods in the theory of Gaussian processes and fields, Translations of Mathematical Monographs, vol 148. American Mathematical Society, Providence

  • Ralchenko KV (2011) Approximation of multifractional Brownian motion by absolutely continuous processes. Theory Probab Math Stat 82:115–127

    Article  MathSciNet  Google Scholar 

  • Samko SG, Kilbas AA, Marichev OI (1993) Fractional integrals and derivatives. Gordon and Breach Science, Yverdon

    MATH  Google Scholar 

  • Stoev SA, Taqqu MS (2006) How rich is the class of multifractional Brownian motions? Stoch Process Appl 116(2):200–221

    Article  MathSciNet  MATH  Google Scholar 

  • Talagrand M (2014) Upper and lower bounds for stochastic processes: modern methods and classical problems, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., A series of modern surveys in mathematicsSpringer, Heidelberg

    Book  Google Scholar 

  • Tudor CA, Viens FG (2007) Statistical aspects of the fractional stochastic calculus. Ann Stat 35(3):1183–1212

    Article  MathSciNet  MATH  Google Scholar 

  • Zähle M (1998) Integration with respect to fractal functions and stochastic calculus. I. Probab Theory Relat Fields 111(3):333–374

    Article  MathSciNet  MATH  Google Scholar 

  • Zähle M (1999) On the link between fractional and stochastic calculus. In: Stochastic dynamics (Bremen, 1997). Springer, New York, pp 305–325

Download references

Acknowledgments

The authors are grateful to the anonymous referees for their useful remarks and suggestions which contributed to a substantial improvement of the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kostiantyn Ralchenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dozzi, M., Kozachenko, Y., Mishura, Y. et al. Asymptotic growth of trajectories of multifractional Brownian motion, with statistical applications to drift parameter estimation. Stat Inference Stoch Process 21, 21–52 (2018). https://doi.org/10.1007/s11203-016-9147-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11203-016-9147-z

Keywords

Mathematics Subject Classification

Navigation