Skip to main content
Log in

Parameter maximum likelihood estimation problem for time periodic modulated drift Ornstein Uhlenbeck processes

  • Published:
Statistical Inference for Stochastic Processes Aims and scope Submit manuscript

Abstract

In this paper we investigate the large-sample behaviour of the maximum likelihood estimate (MLE) of the unknown parameter \(\theta \) for processes following the model

$$\begin{aligned} d\xi _{t}=\theta f(t)\xi _{t}\,dt+d\mathrm {B}_t, \end{aligned}$$

where \(f:{\mathbb {R}}\rightarrow {\mathbb {R}}\) is a continuous function with period, say \(P>0\). Here the periodic function \(f(\cdot )\) is assumed known. We establish the consistency of the MLE and we point out its minimax optimality. These results comply with the well-established case of an Ornstein Uhlenbek process when the function \(f(\cdot )\) is constant. However the case when \(\int _0^P f(t)dt=0\) and \(f(\cdot )\) is not identically null presents some special features. For instance in this case whatever is the value of \(\theta \), the rate of convergence of the MLE is \(T\) as in the case when \(\theta =0\) and \(\int _0^Pf(t)dt\ne 0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antoni J (2009) Cyclostationarity by examples. Mech Syst Signal Process 23:987–1036

    Article  Google Scholar 

  • Barczy M, Pap G (2010) Asymptotic behaviour of maximum likelihood estimator for time inhomogeneous diffusion processes. J Stat Plan Infer 140:1576–1593

    Article  MATH  MathSciNet  Google Scholar 

  • Bishwal JPN (2008) Parameter estimation in stochastic differential equations. Springer, Berlin

    Book  MATH  Google Scholar 

  • Basawa IV, Scott DJ (1983) Asymptotic optimal inference for non-ergodic models. Lectures notes in statistics, vol 17. Springer, New York

    Book  Google Scholar 

  • Brown BM, Hewitt JI (1975) Asymptotic likelihood theory for diffusion processes. J Appl Prob 12:228–238

    Article  MATH  MathSciNet  Google Scholar 

  • Chaari F, Leśkow J, Napolitano A, Sanchez-Ramirez A (eds) (2014) Cyclostationarity: theory and Methods. Lecture notes in mechanical engineering. Springer

  • Collet P, Martinez S (2008) Asymptotic velocity of one dimensional diffusions with periodic drift. J Math Biol 56:765–792

    Article  MATH  MathSciNet  Google Scholar 

  • Davies RB (1985) Asymptotic inference when the amount of information is random. In: Le Cam L, Olshen R (eds) Proceedings of the Berkeley symposium in honour of J. Neyman and J. Kiefer, vol. 2, Wadsworth, Belmont, pp 841–864

  • Dehay D (2014) Time-periodic-modulated-drift Langevin type stochastic differential equations (submitted)

  • Dehling H, Franke B, Kott T (2010) Drift estimation for a periodic mean reversion process. Stat Infer Stoch Process 13:175–192

    Article  MATH  MathSciNet  Google Scholar 

  • Feigin PD (1976) Maximum likelihood estimation for continuous time stochastic processes. Adv Appl Prob 8:712–736

    Article  MATH  MathSciNet  Google Scholar 

  • Feigin PD (1979) Some comments concerning a curious singularity. J Appl Prob 16:440–444

    Article  MATH  MathSciNet  Google Scholar 

  • Gardner WA, Napolitano A, Paura L (2006) Cyclostationarity: half a century of research. Signal Process 86:639–697

    Article  MATH  Google Scholar 

  • Gill RD, Levit BY (1995) Applications of the van Trees inequality: a Bayesian Cramér-Rao bound. Bernoulli 1:59–79

    Article  MATH  MathSciNet  Google Scholar 

  • Gladyshev EG (1963) Periodically and almost periodically correlated processes. Theory Probab Appl 8: 173–177

  • Hájek J (1972) Local asymptotic minimax and admissibility in estimation, vol. 1. In: Proceedings of the 6-th Berkeley symposium on mathematical statistics and probability, University of California Press, pp 175–194

  • Has’minskiǐ (1980) Stochastic stability of differential equations. Sijthoff & Noordhoff, Alphen aan den Rijn

  • Hurd HL, Miamee A (2007) Periodically correlated random sequences: spectral theory and practice. Wiley, Hoboken

    Book  Google Scholar 

  • Höpfner R, Kutoyants Y (2010) Estimating discontinuous periodic signals in a time inhomogeneous diffusion. Stat Infer Stoch Process 13:193–230

    Article  MATH  Google Scholar 

  • Ibragimov IA, Has’minskiǐ RZ (1981) Statistical estimation: asymptotic theory. Springer, New York

    Book  MATH  Google Scholar 

  • Jeganathan P (1982) On the asymptotic theory of estimation when the limit of the likelihood is mixed normal. Sankhia Ser A 44:173–212

    MATH  MathSciNet  Google Scholar 

  • Jeganathan P (1995) Some aspect of asymptotic theory with applications to time series models. Econ Theory 11:818–887

    Article  MathSciNet  Google Scholar 

  • Kutoyants YuA (2004) Statistical inference for ergodic diffusion processes. Springer, London

    Book  MATH  Google Scholar 

  • Le Cam L (1969) Théorie Asymptotique de la décision statistique. Univ. of Montréal Press, Montréal

    Google Scholar 

  • Le Cam L (1986) Asymptotics methods in statistical decision theory. Springer, New York

    Book  Google Scholar 

  • Le Cam L, Yang GL (1990) Asymptotics in statistics: some basic concepts. Springer, New York

    Book  MATH  Google Scholar 

  • Liptser R, Shiryaev A (2001) Statistics of random processes, vol. I+II, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Meyn S, Tweedie RL (2009) Markov chains and stochastic stability, 2nd edn. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Mishra MN, Prakasa Rao BLS (1985) Asymptotic study of the maximum likelihood estimator for non-homogeneous diffusion processes. Stat Decisions 3:193–203

    MATH  MathSciNet  Google Scholar 

  • Phillips PCB (1987) Towards a unified asymptotic theory for autoregression. Biometrika 74(3):535–547

    Article  MATH  MathSciNet  Google Scholar 

  • Revuz D (1984) Markov chains, 2nd edn. Elsevier Sciences Publishers, Amsterdam

    MATH  Google Scholar 

  • Revuz D, Yor M (1994) Continuous Martingales and Brownian motion, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  • Serpedin E, Panduru F, Sari I, Giannakis GB (2005) Bibliography on cyclostationarity. Signal Process 85: 2233–2303

Download references

Acknowledgments

The author would like to thank two anonymous referees for their careful reading of this manuscript and very valuable comments, as well as Pr. Yury Kutoyants for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Dehay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehay, D. Parameter maximum likelihood estimation problem for time periodic modulated drift Ornstein Uhlenbeck processes. Stat Inference Stoch Process 18, 69–98 (2015). https://doi.org/10.1007/s11203-014-9104-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11203-014-9104-7

Keywords

Mathematics Subject Classification

Navigation