Skip to main content
Log in

Killing vector fields of constant length on Riemannian manifolds

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We study the nontrivial Killing vector fields of constant length and the corresponding flows on complete smooth Riemannian manifolds. Various examples are constructed of the Killing vector fields of constant length generated by the isometric effective almost free but not free actions of S 1 on the Riemannian manifolds close in some sense to symmetric spaces. The latter manifolds include “almost round” odd-dimensional spheres and unit vector bundles over Riemannian manifolds. We obtain some curvature constraints on the Riemannian manifolds admitting nontrivial Killing fields of constant length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Killing W., “Über die Grundlagen der Geometrie,” J. Reine Angew. Math., Bd 109, 121–186 (1892).

    Google Scholar 

  2. Ricci G. and Levi-Civita T., “Méthodes de calcul différentiel absolu et leurs applications,” Math. Ann., Bd 54, 125–201, 608 (1901).

    Article  MATH  Google Scholar 

  3. Eisenhart L. P., Riemannian Geometry, Princeton Univ. Press; Humphrey Milford; Oxford Univ. Press, Princeton; London (1926).

    MATH  Google Scholar 

  4. Bianchi L., Lezioni sulla teoria dei gruppi continui finiti di trasfomazioni, Spoerri, Pisa (1918).

    Google Scholar 

  5. Belgun F., Moroianu A., and Semmelmann U., “Symmetries of contact metric manifolds,” Geom. Dedicata, 101, No. 1, 203–216 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  6. Blair D., Contact Manifolds in Riemannian Geometry, Springer-Verlag, Berlin; New York (1976) (Lectures Notes in Math.; 509).

    MATH  Google Scholar 

  7. Boyer C. and Galicki K., “On Sasakian-Einstein geometry,” Internat. J. Math., 11, No. 7, 873–909 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  8. Bott R., “Vector fields and characteristic numbers,” Michigan Math. J., 14, No. 2, 231–244 (1967).

    Article  MATH  MathSciNet  Google Scholar 

  9. Kobayashi Sh. and Nomizu K., Foundations of Differential Geometry. Vol. 1 and 2 [Russian translation], Nauka, Moscow (1981).

    Google Scholar 

  10. Kobayashi Sh., Transformation Groups in Differential Geometry [Russian translation], Nauka, Moscow (1986).

    MATH  Google Scholar 

  11. Wolf J. A., “Homogeneity and bounded isometries in manifolds of negative curvature,” Illinois J. Math., 8, 14–18 (1964).

    MATH  MathSciNet  Google Scholar 

  12. Berger M., “Trois remarques sur les variétés riemanniennes à courbure positive,” C. R. Acad. Sci. Paris Sér. A–B, 263, 76–78 (1966).

    MATH  Google Scholar 

  13. Weinstein A., “A fixed point theorem for positively curved manifolds,” J. Math. Mech., 18, No. 2, 149–153 (1968/1969).

    MATH  MathSciNet  Google Scholar 

  14. Wallach N. R., “Compact homogeneous Riemannian manifolds with strictly positive curvature,” Annals of Math., 96, No. 2, 277–295 (1972).

    Article  MathSciNet  Google Scholar 

  15. Synge J. L., “On the connectivity of spaces of positive curvature,” Quart. J. Math. Oxford Ser. (1), 7, No. 1, 316–320 (1936).

    Article  Google Scholar 

  16. Yano K. and Bochner S., Curvature and Betti Numbers, Princeton Univ. Press, Princeton, NJ (1953).

    MATH  Google Scholar 

  17. Bochner S., “Vector fields and Ricci curvature,” Bull. Amer. Math. Soc., 52, No. 9, 776–797 (1946).

    Article  MATH  MathSciNet  Google Scholar 

  18. Wadsley A. W., “Geodesic foliations by circles,” J. Differential Geom., 10, No. 4, 541–549 (1975).

    MATH  MathSciNet  Google Scholar 

  19. Yang C. T., “On a problem of Montgomery,” Proc. Amer. Math. Soc., 8, No. 2, 255–257 (1957).

    Article  MATH  MathSciNet  Google Scholar 

  20. Berestovskii V. N. and Nikonorov Yu. G., Killing Vector Fields of Constant Length on Riemannian Manifolds [Preprint arXiv:math.DG/0605371v1 15 May 2006].

  21. Montgomery D. and Yang C. T., “On homotopy seven-spheres that admit differentiable pseudo-free circle actions,” Michigan Math. J., 20, No. 3, 193–216 (1973).

    Article  MATH  MathSciNet  Google Scholar 

  22. Alekseevsky A. V. and Alekseevsky D. V., “Riemannian G-manifolds with one dimensional orbit space,” Ann. Global Anal. Geom., 11, No. 3, 197–211 (1993).

    MATH  MathSciNet  Google Scholar 

  23. Grove K. and Ziller W., “Cohomogeneity one manifolds with positive Ricci curvature,” Invent. Math., 149, No. 3, 619–646 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  24. Gromoll D., Klingenberg W., and Meyer W., Riemannian Geometry in the Large [Russian translation], Mir, Moscow (1971).

    Google Scholar 

  25. Bangert V., “On the lengths of closed geodesics on almost round spheres,” Math. Z., Bd 191, No. 4, 549–558 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  26. Tuschmann W., “On the structure of compact simply connected manifolds of positive sectional curvature,” Geom. Dedicata, 67, No. 1, 107–116 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  27. Besse A. L., Manifolds All of Whose Geodesics Are Closed [Russian translation], Mir, Moscow (1981).

    Google Scholar 

  28. Sasaki S., “On the differential geometry of tangent bundles of Riemannian manifolds,” Tohôku Math. J., I: 10, 338–354 (1958); II: 14, 146–155 (1962).

    Article  MATH  Google Scholar 

  29. Tanno S., “Killing vectors and geodesic flow vectors on tangent bundles,” J. Reine Angew. Math., Bd 282, 162–171 (1976).

    MATH  MathSciNet  Google Scholar 

  30. Bolsinov A. V. and Jovanović B., “Noncommutative integrability, moment map and geodesic flows,” Ann. Glob. Anal. Geom., 23, No. 4, 305–322 (2003).

    Article  MATH  Google Scholar 

  31. Bolsinov A. V., “Integrable geodesic flows on Riemannian manifolds,” J. Math. Sci., 123, No. 4, 4185–4197 (2004).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Berestovskii.

Additional information

Original Russian Text Copyright © 2008 Berestovskiĭ V. N. and Nikonorov Yu. G.

The first author was supported by the Russian Foundation for Basic Research (Grants 04-01-00315-a, 05-01-00057-a, and 05-01-03016-b). The second author was supported by the Russian Foundation for Basic Research (Grant 05-01-00611-a) and the State Maintenance Program for the Young Science Doctors and Leading Scientific Schools (a Grant of the President of the Russian Federation; Grants NSh-8526.2006.1 and MD-5179.2006.1).

__________

Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 49, No. 3, pp. 497–514, May–June, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berestovskii, V.N., Nikonorov, Y.G. Killing vector fields of constant length on Riemannian manifolds. Sib Math J 49, 395–407 (2008). https://doi.org/10.1007/s11202-008-0039-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11202-008-0039-3

Keywords

Navigation