Skip to main content
Log in

Stereochemistry in Lewis acid-catalyzed silylation of alcohols, silanols, and methoxysilanes with optically active methyl(1-naphthyl)phenylsilane

  • Published:
Silicon Chemistry

Abstract

Stereochemistry in silylation reactions of alcohols, silanols, and methoxysilanes with optically pure (R)-methyl(1-naphthyl)phenylsilane were studied in the presence of Lewis acid catalysts. Tris(pentafluorophenyl)borane [B(C6F5)3] was found to be highly reactive and stereoselective in the reactions. Optically active (R)-(alkoxy)methyl(1-naphthyl)phenylsilanes with 91–97% ee were produced from alcohols through the inversion stereochemistry of the silane. Stereoselectivity in the reaction with triphenylsilanol was moderate (64% ee). (R)-1,3-Dimethyl-1-(1-naphthyl)-1,3,3-triphenyldisiloxane with 94% ee was obtained from the silane with (methoxy)methyldiphenylsilane. The reaction with (R)-(methoxy)methyl(1-naphthyl)phenylsilane (88% ee) gave (R, R)-1,3-dimethyl-1,3-di(1-naphthyl)-1,3-diphenyldisiloxane [(R, R):(R, S):(S, S) = 87:12:0.5]. The stereochemistry was proved to almost completely inversion and retention for the chiral silicon centers of the silane and methoxysilane, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. (a) Mori, A., Hishida, T., Soga, Y. & Kawakami, Y. 1995 A Facile Synthesis of Disiloxanes with Functional Groups, Chem. Lett. 107–108; (b) Mori, A., Sato, H., Mizuno, K., Hiyama, T., Shintani, K. & Kawakami, Y. 1996 A Facile Preparation and Polymerization of 1,1-Difunctionalized Disiloxanes, Chem. Lett. 517–518; (c) Kawakami, Y., Aoki, T., Hisada, H., Yamamura, Y. & Yamashita, Y. 1985 Poly(p-disiloxane substituted styrene)s as materials for oxygen permeable membranes, Polym. Commun. 26, 133–136; (d) Kawakami, Y., Karasawa, H., Kamiya, H. & Yamashita, Y. 1986 The role of p-oligosiloxane substituents of polystyrene in selective oxygen permeation through the polymer film, Polym. J. 18, 237–241; (e) Kawakami, Y., Kishimoto, N., Takeshita, K. & Watanabe, T. 1999 Relaxation study of poly[(4-oligodimethylsiloxanyl)styrene]s by solid state 29Si NMR′, Design Monom. Polym. 2, 93–101; (f) Cho, Y. H., He, M., Kim, B. K. & Kawakami, Y. 2004 Improvement of holographic performance by Novel photopolymer systems with siloxane-containing epoxides, Sci. Tech. Adv. Mater. 5, 319–323; (g) He, M., Cho, Y.H., Kim, N. & Kawakami, Y. 2005 Transmission holographic gratings using (siloxane and mesogen)-containing compounds, Design. Monom. Polym. 8, 473–486; (h) Cho, Y.H., Kawade, R., Kubota, T. & Kawakami, Y. 2005 Control of morphology and diffraction efficiency of holographic gratings using siloxane-containing reactive diluent, Sci. Tech. Adv. Mater. 6, 435–442; (i) Cho, Y.H., Shin, W., Kim, N., Kim, B.K. & Kawakami, Y. 2005 High-performance transmission holographic gratings via different polymerization rates of dipentaerythritol acrylates and siloxane-containing epoxides, Chem. Mater. 17, 6263–6271; (j) Kawakami, Y., Cho, Y.H., He, M. & Xue, L. 2006 Design of polysiloxane materials for electronic applications, Mol. Cryt . Liq. Cryst. 447, 189–202.

  2. Li, Y. & Kawakami, Y. 1999 Catalytic cross-dehydrocoupling polymerization of 1,4-bis(dimethylsilyl)benzene with water. A new approach to poly(oxydimethylsilyl)benzene, Macromolecules 32, 3540–3542.

    Article  CAS  Google Scholar 

  3. (a) Li, Y. & Kawakami, Y. 1999 Efficient synthesis of poly(silylether)s by Pd/C and RhCl(PPh3)3 catalyzed cross-dehydrocoupling polymerization of bis(hydrosilane)s with diols, Macromolecules 32, 6871–6873; (b) Li, Y. & Kawakami, Y. 1999 Synthesis and properties of polymers containing silphenylene moiety via catalytic cross-dehydrocoupling polymerization of 1,4-Bis(dimethylsilyl)benzene, Macromolecules 32, 8768–8773.

    Article  CAS  Google Scholar 

  4. (a) Zhang, R., Pinhas, A.R. & Mark, J.E. 1997 Synthesis of poly(tetramethyl-m-silphenylenesiloxane), an elastomer of enhanced high-temperature stability, Macromolecules 30, 2513–2515; (b) Zhang, R., Mark, J.E. & Pinhas, A.R. 2000 Dehydrocoupling polymerization of bis-silanes and disilanols to poly(silphenylenesiloxane) as catalyzed by rhodium complexes, Macromolecules 33, 3508–3510; (c) Homrighausen, C.L. & Keller, T.M. 2002 Synthesis of hydroxy-terminated, oligomeric poly(silarylene disiloxane)s via rhodium-catalyzed dehydrogenative coupling and their use in the aminosilane-disilanol polymerization reaction, J. Polym. Sci.: Part A: Polym. Chem. 40, 1334–1341.

    Article  CAS  Google Scholar 

  5. (a) Pike, R.M. 1961 J. Polym. Sci. 50, 151; (b) Babu, G.N. & Newmark, R.A. 1991 Polymerization of 1,4-bis(hydroxydimethylsilyl)benzene with (dimethylamino)/chlorosilanes: Structural characterization by silicon-29 NMR, Macromolecules 24, 4503–4509.

    Article  CAS  Google Scholar 

  6. Gilman, H., Dunn, G.E., Hartzfeld, H. & Smith, A.G. 1955 The piperidine-catalyzed reaction of triphenylsilane with some hydroxy compounds, J. Am. Chem. Soc. 77, 1287–1288.

    Article  CAS  Google Scholar 

  7. Klingler, R. J., Krause, T. R. & Rathke, J.W. 1988 Silane-silanol dehydrocondensation. The microscopic reverse of hydrogen activation by an organometallic oxide complex, J. Organomet. Chem. 352, 81–94.

    Article  CAS  Google Scholar 

  8. (a) Corriu R.J.P., Guerin C. & Moreau J.J.E. 1989 Dynamic stereochemistry at silicon, chapt 4, p 305-370 in The Chemistry of Organic Silicon Compounds, Part I, Patai S. & Rappoport E. (Eds.), John Wiley & Sons, New York; (b) Corriu R.J.P., Guerin C., Moreau J.J.E. 1984 Top. Stereochem.15, 43.

    Chapter  Google Scholar 

  9. Oishi, M. & Kawakami, Y. 1999 A stereoselective approach to optically active bifunctional 1,3-Dimethyl-1,3-diphenyldisiloxanes, Org. Lett. 1, 549–552.

    Article  CAS  Google Scholar 

  10. (a) Oishi, M., Moon, J. Y., Janvikul, W. & Kawakami, Y. 2001 Synthesis of poly(methylphenylsiloxane) rich in syndiotacticity by Rh-catalyzed stereoselective cross-dehydrocoupling polymerization of optically active 1,3-Dimethyl-1,3-diphenyldisiloxane derivatives, Polym. Int. 50, 135–143; (b) Oishi, M. & Kawakami, Y. 2000 Synthesis of stereoregular and optically active polysiloxanes containing 1,3-Dimethyl-1,3-diphenyldisiloxane as a constitutional unit, Macromolecules 33, 1960–1963; (c) Seino, M., Oishi, M., Imae, I. & Kawakami, Y. 2002 Formation of poly(silsesquioxane) gel containing optically active 1,3-Dimethyl-1,3-diphenyldisiloxane as a connecting unit', Polym. J. 34, 43–47.

    Article  CAS  Google Scholar 

  11. (a) Rubinsztajn, S. & Cella, J.A. 2004 Formation of siloxane bonds via new condensation process. Polym. Preprints 45, 635–636; (b) Zhou, D.Q. & Kawakami, Y. 2005 Tris(pentafluorophenyl)borane as a superior catalyst in the synthesis of optically active SiO-containing polymers, Macromolecules 38, 6902–6908; (c) Chojnowski, J., Rubinsztajn, S., Cella, J.A., Fortuniak, W., Cypryk, M., Kurjata, J. & Kazmierski, K. 2005 Mechanism of the B(C6F5)3-catalyzed reaction of silyl hydrides with alkoxysilanes. Kinetic and spectroscopic studies, Organometallics 24, 6077–6084.

    CAS  Google Scholar 

  12. Sommer, L.H. & Frye, C.L. 1959 Optically active organosilicon compounds having reactive groups bonded to asymmetric silicon. Displacement reactions at silicon with pure retention and pure inversion of configuration, J. Am. Chem. Soc. 81, 1013.

    Article  CAS  Google Scholar 

  13. Citron, J.D. 1975 Preparation, resolution and dynamic stereochemistry of the 7H-7-Methyl-7-Silabenz[d,e]anthracene system, J. Organomet. Chem. 86, 359–367.

    Article  CAS  Google Scholar 

  14. (a) Kawakami, Y., Takahashi, T., Yada, Y. & Imae, I. 1998 Synthesis of optically active allylhydromethylphenylsilane and elucidation of the stereochemical pathway to give isotactic poly(methylphenylsilylenetrimethylene), Polym. J. 30, 1001–1003; (b) Kawakami, Y. & Imae, I. 1999 Functionality and stereochemical design of silicon-containing polymers, Macromol. Chem. Phys. 200, 1245–1256.

    Article  CAS  Google Scholar 

  15. Shinke, S. & Kawakami, Y. 2001 Chromatographic separation of asymmetric organosilicon compounds on cellulose and amylose stationary phases. The stereochemistry of functional transformation reactions, Chromatographia 53, 140–146.

    Article  CAS  Google Scholar 

  16. (a) Parks, D.J., Blackwell, J. M. & Piers, W.E. 2000 Studies on the mechanism of B(C6F5)3-catalyzed hydrosilation of carbonyl functions, J. Org. Chem. 65, 3090–3098; (b) Blackwell, J.M., Foster, K.L., Beck, V.H. & Piers, W.E. 1999 B(C6F5)3-catalyzed silation of alcohols: A mild, general method for synthesis of silyl ethers, J. Org. Chem. 64, 4887–4892.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Kawakami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shinke, S., Tsuchimoto, T. & Kawakami, Y. Stereochemistry in Lewis acid-catalyzed silylation of alcohols, silanols, and methoxysilanes with optically active methyl(1-naphthyl)phenylsilane. Silicon Chem 3, 243–249 (2007). https://doi.org/10.1007/s11201-007-9026-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11201-007-9026-y

Keywords

Navigation