Skip to main content
Log in

Structure and isomerization of cyclotrimetallenes

  • Published:
Silicon Chemistry

Abstract

The substituent migration on the X2Y rings (X, Y=C, Si, Ge) was studied by theoretical method with silyl and hydrogen substituents and it was found that all the reactions (with the exception of cyclopropene) proceed in a two-step mechanism via a stable intermediate. The rate determining step of the reaction is the first step. The barrier of the second step is small and the energy of the intermediate is close to that of the reactant. Both the first transition state (T1) and the intermediate (I) are of monobridge structures of different types. Since the intermediate bridge structure is almost as stable as the product, it may be observed in the substituent migration reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sekiguchi, A., Yamazaki, H., Kabuto, C., Sakurai, H. & Nagase, S. 1995 J. Am. Chem. Soc. 117, 8025.

    Article  CAS  Google Scholar 

  2. (a) Iwamoto, T., Kabuto, C. & Kira, M. 1999 J. Am. Chem. Soc. 121, 886. (b) Ichinohe, M., Matsuno, T. & Sekiguchi, A. 1999 Angew. Chem. Int. Ed. 38, 2194.

    Google Scholar 

  3. Wiberg, N., Lerner, H.-W., Vasisht, S.-K., Wagner, S., Karaghiosoff, K., Nöth, H. & Ponikwar, W. 1999 Eur. J. Inorg. Chem. 1211.

  4. Lee, V. Ya., Ichinohe, M., Sekiguchi, A., Takagi, N. & Nagase, S. 2000 J. Am. Chem. Soc. 122, 9034.

    Article  CAS  Google Scholar 

  5. Sekiguchi, A. & Lee, V.Y. 2003 Chem. Rev. 103, 1429.

    Article  CAS  Google Scholar 

  6. Weidenbruch, M. 2001 The Chemistry of Organic Silicon Compounds, Rappoport, Z. & Apeloig, Y. (Eds.), Vol. 3, Chapter 5, Chichester: Wiley.

  7. Naruse, Y., Ma, J. & Inagaki, S. 2001 Tetrahedron Letters 42, 6553.

    Article  CAS  Google Scholar 

  8. Sekiguchi, A., Ishida, Y., Fukaya, N., Ichinohe, M., Takagi, N. & Nagase, S. 2002 J. Am. Chem. Soc. 124, 1158.

    Article  CAS  Google Scholar 

  9. Chaouch, S.E., Guillemin, J.-C., Kárpáti, T. & Veszprémi, T. 2001 Organometallics 20, 5405.

    Article  CAS  Google Scholar 

  10. Gaussian 03, Revision B03, Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, Jr., J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C. & Pople, J.A., Gaussian, Inc., Wallingford CT, 2004.

  11. (a) Veszprémi, T., Takahashi, M., Ogasawara, J., Sakamoto, K. & Kira, M. 1998 J. Am. Chem. Soc. 120, 2408. (b) Veszprémi, T., Takahashi, M., Hajgató, B. & Kira, M. 2001 J. Am. Chem. Soc. 123, 6629.

  12. Kosa, M., Karni, M. & Apeloig, Y. 2006 J. Chem. Theor. Comput. 2, 956.

    Article  CAS  Google Scholar 

  13. (a) Reed, A.E., Weinstock, R.B. & Weinhold, F. 1985 J. Chem. Phys. 83, 735. (b) Reed, A.E. & Weinhold, F. 1985 J. Chem. Phys. 83, 1736. (c) Reed, A.E., Curtiss, L.A. & Weinhold, F. 1998 Chem. Rev. 88, 899.

  14. Biegler-König, F., Schönbohm, J. & Bayles, D, AIM2000 – A program to analyze and visualize atoms in molecules 2001 J. Comp. Chem. 22, 545.

  15. The geometry around the X1 = X3 double bond (see Scheme 3) depends on the nature of the metal and the substituents, see Ref. 1,2b, 4. The geometries around the C=C, Si=Si and Si=Ge double bonds were calculated to be planar for A, B and C. For D and E the orientation of double bonds is trans-bent: the substituents move above and below the ring plane by 45 and 51 deg. respectively.

  16. Nagase, S., Kobayashi, K. & Takagi, N. 2000 J. Org. Chem. 611, 264.

    Article  CAS  Google Scholar 

  17. Kira, M., Iwamoto, T. & Kabuto, C. 1996 J. Am. Chem. Soc. 118, 10303.

    Article  CAS  Google Scholar 

  18. Iwamoto, T., Tamura, M., Kabuto, C. & Kira, M. 2003 Organometallics 22, 2342.

    Article  CAS  Google Scholar 

  19. Masamune, S., Kabe, Y. & Collins, S. 1985 J. Am. Chem. Soc. 107, 552.

    Google Scholar 

  20. Boatz, J.A. & Gordon, M.S. 1988 J. Phys. Chem. 92, 3037.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Veszprémi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veszprémi, T., Olasz, A. & Pintér, B. Structure and isomerization of cyclotrimetallenes. Silicon Chem 3, 187–194 (2007). https://doi.org/10.1007/s11201-006-9020-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11201-006-9020-9

Key words

Navigation