Skip to main content
Log in

Magnetic particles in atmospheric particulate matter collected at sites with different level of air pollution

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

Magnetic measurements of deposited atmospehric dust can serve as an additional parameter in assessing environmental pollution. This method is based on the assumption that atmospherically deposited particles contain significant portion of ferrimagnetic iron oxides of anthropogenic origin, which can be easily detected. Aim of this paper is to identify clearly magnetic fraction of daily samples of particulate matter less than 10 μm (PM10), routinely used for air quality assessment and monitoring. We used combination of thermomagnetic analyses and other physical and chemical methods, including scanning electron microscopy (SEM) and Mössbauer spectroscopy. Our results show that daily samples of PM10, collected at sites with different degree of atmospheric pollution, contain magnetite of spherical shape, which is presumably of industrial origin. Thus, magnetic methods can be applied directly to the same substances, which are used routinely in air quality assessment and monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguilar Reyes B., Cejudo Ruiz R., Martínez-Cruz J., Bautista F., Goguitchaichvili A., Carvallo C. and Morales J., 2012. Ficus benjamina leaves as indicator of atmospheric pollution: a reconaissance study. Stud. Geophys. Geod., 56, 879–887, DOI: 10.1007/s11200-011-0265-1.

    Article  Google Scholar 

  • Blaha U., Sapkota B., Appel E., Stanjek H. and Rösler W., 2008. Micro-scale grain-size analysis and magnetic properties of coal-fired power plant fly ash and its relevance for environmental magnetic pollution studies. Atmos. Environ., 42, 8359–8370.

    Article  Google Scholar 

  • Bućko M.S., Magiera T., Johanson B., Petrovský E. and Pesonen L.J., 2011. Identification of magnetic particulates in road dust accumulated on roadside snow using magnetic, geochemical and micro-morphological analyses. Environ. Pollut., 159, 1266–1276, DOI: 10.1016/j.envpol.2011.01.030.

    Article  Google Scholar 

  • Čapek L., Kreibich V., Dědeček J., Grygar T., Wichterlová B., Sobalík Z., Martens J.A., Brosius R. and Tokarová V., 2005. Analysis of Fe species in zeolites by UV-VIS-NIR, IR spectra and voltammetry. Effect of preparation, Fe loading and zeolite type. Micropor. Mesopor. Mater., 80, 279–289.

    Google Scholar 

  • Chester R., Sharples E.J., Sanders G.S., Oldfield F. and Saydam A.C., 1984. The distribution of natural and non-crustal ferrimagnetic minerals in soil-sized particulates from the Mediterranean atmosphere. Water Air Soil Pollut., 23, 25–36.

    Article  Google Scholar 

  • CHMI, 2007. Air Pollution Data. Annual Report, Czech Hydrometeorological Institue, Prague, Czech Republic, http://www.chmi.cz/uoco/isko/tab_roc/2007_enh/eng/index.html.

    Google Scholar 

  • Cornell R.M. and Schwertmann U., 2003. The Iron Oxides, Structure, Properties, Reactions, Occurrences and Use. 2nd Edition. Wiley-VCH, 152–160.

    Google Scholar 

  • Davila A.F., Rey D., Mohamed K., Rubio B. and Guerra A.P., 2006. Mapping the sources of urban dust in a coastal environment by measuring magnetic parameters of Platanus hispanica leaves. Environ. Sci. Technol., 40, 3922–3928.

    Article  Google Scholar 

  • Dvorská A., Lammel G., Klánová J. and Holoubek I., 2008. Kosetice, Czech Republic — ten years of air pollution monitoring and four years of evaluating the origin of persistent organic pollutants. Environ. Pollut., 156, 403–408.

    Article  Google Scholar 

  • Fialová H., Maier G., Petrovský E., Kapička A., Boyko T., Scholger R. and MAGPROX Team, 2006. Magnetic properties of soils from sites with different geological and environmental settings. J. Appl. Geophys., 59, 273–283.

    Article  Google Scholar 

  • Flanders P.J., 1994. Collection, measurement, and analysis of airborne magnetic particulates from pollution in the environment. J. Appl. Phys., 75, 5931–5936.

    Article  Google Scholar 

  • Flanders P.J., 1999. Identifying fly ash at a distance from fossil fuel power stations. Environ. Sci. Technol., 33, 528–532.

    Article  Google Scholar 

  • Gautam P., Blaha U. and Appel E., 2005. Magnetic susceptibility of dust-loaded leaves as a proxy of traffic-relatedheavy metal pollution in Kathmandu city, Nepal. Atmos. Environ., 39, 2201–2211.

    Article  Google Scholar 

  • Górka-Kostrubiec B., Król E. and Jeleńska M., 2012. Dependence of air pollution on meteorological conditions based on magnetic susceptibility measurements: a case study from Warsaw. Stud. Geophys. Geod., 56, 861–877, DOI: 10.1007/s11200-010-9094-x.

    Article  Google Scholar 

  • Grygar T., Bezdička P., Hradil D., Doménech-Carbó A, Marken F., Pikna L. and Cepriá G., 2002. Voltammetric analysis of iron oxide pigments. Analyst, 127, 1100–1107.

    Article  Google Scholar 

  • Hanesch M., Scholger R. and Rey D., 2003. Mapping dust distribution around an industrial site by measuring magnetic parameters of tree leaves. Atmos. Environ., 37, 5125–5133.

    Article  Google Scholar 

  • Hrouda F., 1994. A technique for the measurement of thermal-changes of magnetic-susceptibility of weakly magnetic rocks by the CS-2 apparatus and KLY-2 kappabridge. Geophys. J. Int., 118, 604–612.

    Article  Google Scholar 

  • Hunt A., 1986. The application of mineral magnetic methods to atmospheric aerosol discrimination. Phys. Earth Planet. Inter., 42, 10–21.

    Article  Google Scholar 

  • Kapička A., Jordanova N., Petrovský E. and Podrázský V., 2003. Magnetic study of weakly contaminated forest soils. Water Air Soil Pollut., 148, 31–44.

    Article  Google Scholar 

  • Kapička A., Jordanova N., Petrovský E. and Ustjak S., 2001. Effect of different soil conditions on magnetic parameters of power-plant fly ashes. J. Appl. Geophys., 48, 93–102.

    Article  Google Scholar 

  • Kim W., Doh S.J., Yu Y., 2009. Anthropogenic contribution of magnetic particulates in urban roadside dust. Atmos. Environ., 43, 3137–3144.

    Article  Google Scholar 

  • Kim W., Doha S.J., Park Z.H. and Yun S.T., 2007. Two-year magnetic monitoring in conjunction with geochemical and electron microscopic data of roadside dust in Seoul, Korea. Atmos. Environ., 41, 7627–7641.

    Article  Google Scholar 

  • Kruiver P.P., Dekkers M.J. and Heslop D., 2001. Quantification of magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetisation. Earth Planet. Sci. Lett., 189, 269–276.

    Article  Google Scholar 

  • Kukier U., Ishak C.F., Sumner M.E. and Miller W.P., 2003. Composition and element solubility of magnetic and non-magnetic fly ash fractions. Environ. Pollut., 123, 255–266.

    Article  Google Scholar 

  • Lecoanet H., Leveque F. and Ambrosi J.P., 2003. Combination of magnetic parameters: an efficient way to discriminate soil-contamination sources (south France). Environ. Pollut., 122, 229–234.

    Article  Google Scholar 

  • Lehndorff E., Urbat M. and Schwark L., 2006. Accumulation histories of magnetic particles on pine needles as function of air quality. Atmos. Environ., 40, 7082–7096.

    Article  Google Scholar 

  • Maher B., Moore C. and Matyka J., 2008. Spatial variation in vehicle-derived metal pollution identified by magnetic and elemental analysis of roadside tree leaves. Atmos. Environ., 42, 364–373.

    Article  Google Scholar 

  • Mang C. and Kontny A., 2013. Origin of two Verwey transitions in different generations of magnetite from the Chesapeake Bay impact structure, USA. J. Geophys. Res. (in print).

    Google Scholar 

  • Matzka J. and Maher B.A., 2002. Magnetic biomonitoring of roadside tree leaves: identification of spatial and temporal variations in vehicle-derived particulates. Atmos. Environ., 33, 4565–4569.

    Article  Google Scholar 

  • McIntosh G., Gomez-Paccard M. and Osete M.L., 2007. The magnetic properties of particles deposited on Platanus x hispanica leaves in Madrid, Spain, and their temporal and spatial variations. Sci. Tot. Environ., 382, 135–146.

    Article  Google Scholar 

  • Moreno E., Sagnotti L., Dinares-Turell J., Winkler A. and Cascella A., 2003. Biomonitoring of traffic air pollution in Rome using magnetic properties of tree leaves. Atmos. Environ., 37, 2967–2977.

    Article  Google Scholar 

  • Mugica V., Maubert M., Torres M., Munoz J. and Rico E., 2002. Temporal and spatial variations of metal content in TSP and PM10 in Mexico City during 1996–1998. J. Aerosol. Sci., 33, 91–102.

    Article  Google Scholar 

  • Muxworthy A.R., Matzka J., Davila A.F. and Petersen N., 2003. Magnetic signature of daily sampled urban atmospheric particles. Atmos. Environ., 37, 4163–4169.

    Article  Google Scholar 

  • Oldfield F., Hunt A., Jones M.D.H., Chester L., Dearing J.A., Olsson L. and Prospero J.M., 1985. Magnetic differentiation of atmospheric dusts. Nature, 317, 516–518.

    Article  Google Scholar 

  • Petrovský E. and Kapička A., 2006. On determination of the Curie point from thermomagnetic curves. J. Geophys. Res., 111, B12S27, DOI: 10.1029/2006JB004507.

    Article  Google Scholar 

  • Protonotarios V., Petsas N. and Moutsatsou A., 2002. Levels and composition of atmospheric particulates (PM10) in a mining-industrial site in the city of Lavrion, Greece. J. Air. Waste Manag. Assoc., 52, 11263–1273.

    Google Scholar 

  • Sagnotti L., Macri P., Egli R. and Mondino M., 2006. Magnetic properties of atmospheric particulate matter from automatic air sampler stations in Latium (Italy): Toward a definition of magnetic fingerprints for natural and anthropogenic PM10 sources. J. Geophys. Res., 111, B12S22, DOI: 10.1029/2006JB004508.

    Article  Google Scholar 

  • Sagnotti L., Taddeucci J., Winkler A. and Cavallo A., 2009. Compositional, morphological, and hysteresis characterization of magnetic airborne particulate matter in Rome, Italy. Geochem. Geophys. Geosyst., 10, Q08Z06, DOI: 10.1029/2009GC002563.

    Article  Google Scholar 

  • Salo H., Bućko M.S., Vaahtovuo E., Limo J., Mäkinen J. and Pesonen L.J., 2012. Biomonitoring of air pollution in SW Finland by magnetic and chemical measurements of moss bags and lichens. J. Geochem. Explor., 115, 69–81, DOI: 10.1016/j.gexplo.2012.02.009.

    Article  Google Scholar 

  • Samet J.M., Dominici F., Curriero F.C., Coursac I. and Zeger S.L., 2000. Fine particulate air pollution and mortality in 20 US Cities, 1987–1994. N. Eng. J. Med., 343, 1742–1749.

    Article  Google Scholar 

  • Shu J., Dearing J.A., Morse A.P., Yu L. and Yuan N., 2001. Determining the sources of atmospheric particles in Shanghai, China, from magnetic and geochemical properties. Atmos. Environ., 35, 2615–2625.

    Article  Google Scholar 

  • Scholz F., Schröder U. and Gulaboski R., 2005. Electrochemistry of Immobilized Particles and Droplets. Springer. Heidelberg, Berlin, Germanz, XIII, 290 pp., ISBN: 3-540-22005-4.

    Google Scholar 

  • Strzyszcz Z., Magiera T. and Heller F., 1996. The influence of industrial imissions on the magnetic susceptibility of soils in Upper Silesia. Stud. Geophys. Geod., 40, 276–286.

    Article  Google Scholar 

  • Urbat M., Lehndorff E. and Schwark L., 2004. Biomonitoring of air quality in the Cologne conurbation using pine needles as a passive sampler — Part I: magnetic properties. Atmos. Environ., 38, 3781–3792.

    Article  Google Scholar 

  • Xia D.S., Chen F.H., Bloemendal J., Liu X.M., Yu Y. and Yang L.P., 2008. Magnetic properties of urban dustfall in Lanzhou, China, and its environmental implications. Atmos. Environ., 42, 2198–2207.

    Article  Google Scholar 

  • Zhang C., Huang B., Li Y. and Liu H., 2006. Magnetic properties of high-road-side pine tree leaves in Beijing and their environ-mental significance. Chinese Sci. Bull., 51, 3041–3052, DOI: 10.1007/s11434-006-2189-7.

    Article  Google Scholar 

  • Zhang C., Huang B., Piper J.D.A. and Luo R., 2008. Biomonitoring of atmospheric particulate matter using magnetic properties of Salix matsudana tree ring cores. Sci. Tot. Environ., 93, 177–190, DOI: 10.1016/j.scitotenv.2007.12.032.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduard Petrovský.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrovský, E., Zbořil, R., Grygar, T.M. et al. Magnetic particles in atmospheric particulate matter collected at sites with different level of air pollution. Stud Geophys Geod 57, 755–770 (2013). https://doi.org/10.1007/s11200-013-0814-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-013-0814-x

Keywords

Navigation