Skip to main content
Log in

Constraints of archaeomagnetic dating and field intensity determinations in three ancient tile kilns in Belgium

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

The aim of this study is to date by the archaeomagnetic method the last heatingcooling cycle of one Roman and two Medieval tile kilns, discovered in Belgium. The investigation demonstrates the limitations when well-documented local directional secular variation curves of the geomagnetic field in the past are used for dating and the difficulties when trying to determine field intensities from “in situ” baked clays from the kilns. The three kilns yielded very well defined ancient field directions but two possible dating solutions for each of them when no a priori time constraints are taken into account, due to field direction recurrence. As an increase of the dating accuracy and reduction of the number of dating solutions can be expected using the full field vector information, also field intensity determinations on burnt clays from the kilns were attempted. Field intensities from samples of the Roman and of one of the Medieval kilns are quite scattered. On the other hand, results obtained applying the Thellier-Thellier method and the modified method developed by Dekkers and Böhnel on sister samples from the Roman kiln agree fairly well. Rock magnetic properties reveal high variance in the kilns that point to varying spatial heating and cooling conditions in the kilns. Even well burnt material from the kilns shows irreversible changes when heated in air in the laboratory. Reliable field intensities on “in situ” baked materials from kilns themselves can therefore only be obtained when measuring sufficient number of samples from different parts of the kiln, taking into account the spatial-temporal conditions during kiln operation and cooling history. More reference intensity data is needed in our regions in order to improve dating based on directional reference data only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Batt C.M., 1997. The British archaeomagnetic calibration curve: an objective treatment. Archaeometry, 39, 153–168.

    Article  Google Scholar 

  • Casas L., Linford P. and Shaw J., 2007. Archaeomagnetic dating of Dogmersfield Park brick kiln (Southern England). J. Archaeol. Sci., 34, 2005–2019.

    Article  Google Scholar 

  • Casas L. and Incoronato A., 2007. Distribution analysis of erros due to relocation of geomagnetic data using the ‘Conversion via Pole’ (CVP method: Implications on archaeomagnetic data. Geophys. J. Int., 169, 448–454.

    Article  Google Scholar 

  • Catanzariti G., McIntosh G., Monge Soares A.M., Díaz-Martínez E., Kresten P. and Osete M.L., 2008. Archaeomagnetic dating of a vitrified wall at the Late Bronze Age settlement of Misericordia (Serpa, Portugal). J. Archaeol. Sci., 35, 1399–1407.

    Article  Google Scholar 

  • Chauvin A., Garcia Y., Lanos P. and Laubenheimer F., 2000. Palaeointensity of the geomagnetic field recovered on archaeomagnetic sites from France. Phys. Earth Planet. Inter., 120, 111–136.

    Article  Google Scholar 

  • Clark A.J, Tarling D.H. and Noël M., 1988. Developments in archaeomagnetic dating in Britain. J. Archaeol. Sci., 15, 645–667.

    Article  Google Scholar 

  • Coe R.S., Grommé S.C. and Mankinen E.A., 1978. Geomagnetic paleointensities from radiocarbondated lava flows on Hawaii and the question of the Pacific nondipole low. J. Geophys. Res., 83, 1740–1756.

    Article  Google Scholar 

  • De Marco E., Spassov S., Kondopoulou D., Zananiri I. and Gerofoka E., 2008. Archeomagnetic study and dating of a Hellenistic site in Katerini (N. Greece). Phys. Chem. Earth., 33, 481–495.

    Article  Google Scholar 

  • Dekkers M.J and Böhnel H.N., 2006. Reliable absolute paleointensities independent of magnetic domain state. Earth Planet. Sci. Lett., 248, 507–516.

    Article  Google Scholar 

  • Donadini F., Korte M. and Constable C.G., 2009. Geomagnetic field for 0–3 ka: 1. New data sets for global modeling. Geochem. Geophys. Geosyst., 10, Q06007, DOI: 10.1029/2008GC002295.

    Article  Google Scholar 

  • Donadini F., Korhonen K., Riisager P. and Personen L., 2006. Database of Holocene geomagnetic intensity information. EOS Trans. AGU, 87(14), 137.

    Article  Google Scholar 

  • Donadini F., Riisager P., Korhonen K., Kahma K., Pesonen L. and Snowball I., 2007. Holocene geomagnetic paleointensities: A blind test of absolute paleointensity techniques and materials. Phys. Earth Planet. Inter., 161, 19–35.

    Article  Google Scholar 

  • Fisher R.A., 1953. Dispersion on a sphere. Proc. R. Soc. Lond. A, 217, 295–305.

    Article  Google Scholar 

  • Frébutte C. and Gustin M., 2006. La tuilerie d’Hermalle-Sous-Huy. Les Dossiers d’ archéologie, 315, 104–107 (in French).

    Google Scholar 

  • Gallet Y., Genevey A. and Le Goff M., 2002. Three millennia of directional variations of the Earth’s magnetic field in western Europe as revealed by archaeological artefacts. Phys. Earth Planet. Inter., 131, 81–89, DOI: 10.1016/S0031-9201(02)00030-4.

    Article  Google Scholar 

  • Gallet Y., Genevey A. and Courtillot V., 2003. On the possible occurrence of archaeomagnetic jerks in the geomagnetic field over the past three millennia. Earth Planet. Sci. Lett., 214, 237–242.

    Article  Google Scholar 

  • Genevey A. and Gallet Y., 2002. Intensity of the geomagnetic field in Western Europe over the past 2000 years: new data from ancient French pottery. J. Geophys. Res., 107, 2285. DOI: 10.1029/2001JB000701.

    Article  Google Scholar 

  • Genevey A., Gallet Y., Rosen J and Le Goff M., 2009. Evidence for rapid geomagnetic field intensity variations in Western Europe over the past 800 years from new French archeointensity data. Earth Planet. Sci. Lett., 284, 132–143.

    Article  Google Scholar 

  • Gomez-Paccard M., Catanzariti G., Ruiz V.C., McIntosh G., Núñnez J.I., Osete M.L., Lanos Ph., Chauvin A., Tarling D.H., Bernal-Casasola D., Thiriot J. and Archaeological Working Group, 2006. A catalogue of Spanish archaeomagnetic data. Geophys. J. Int., 166, 1125–1143.

    Article  Google Scholar 

  • Gomez-Paccard M., Chauvin P., Lanos Ph. and Thiriot J., 2008. New archeointensity data from Spain and the geomagnetic dipole moment in western Europe over the past 2000 years. Geophys. J. Res., 113, B09103, DOI: 10.1029/2008JB005582.

    Article  Google Scholar 

  • Herries A.I.R., Kovacheva M. and Kostadinova M., 2008. Mineral magnetism and archaeomagntic dating of a mediaeval oven from Zlatna Livada, Bulgaria. Phys. Chem. Earth., 33, 496–510.

    Article  Google Scholar 

  • Hervé G., Schnepp E., Chauvin A., Lanos Ph. and Nowaczyk N., 2011. Archaeomagnetic results on three Early Iron Age salt-kilns from Moyenvic (France). Geophys. J. Int., 185, 144–156.

    Article  Google Scholar 

  • Hill MJ., Lanos Ph, Chauvin A, Vitali D. and Laubenheimer F., 2007. An archaeomagnetic investigation of a Roman amphorae workshop in Albinia (Italy). Geophys. J. Int., 169, 471–482, DOI: 10.1111/j.1365-246X.2007.03362.x.

    Article  Google Scholar 

  • Hus J. and Geeraerts R., 1998. The direction of geomagnetic field in Belgium since Roman times and the reliability of archaeomagnetic dating. Phys. Chem. Earth., 23, 997–1007.

    Article  Google Scholar 

  • Hus J., Ech-Chakrouni S., Jordanova D. and Geeraerts R., 2003. Arhaeomagnetic investigation of two Mediaeval brick constructions in North Belgium and the magnetic anisotropy of Bricks. Geoarchaeology, 18, 225–253.

    Article  Google Scholar 

  • Jordanova N., Kovacheva M. and Kostadinova M., 2004. Archaeomagnetic investigation and dating of Neolithic archaeological site (Kovachevo) from Bulgaria. Phys. Earth Planet. Inter., 147, 89–102.

    Article  Google Scholar 

  • Kirschvink J.L., 1980. The least-squares line and plane and the analysis of paleomagnetic data. Geophys. J. R. Astr. Soc., 62, 699–718.

    Article  Google Scholar 

  • Korhonen K., Donadini F., Riisager P. and Personen L., 2008. GEOMAGIA50: an archeointensity database with PHP and MySQL. Geochem. Geophys. Geosyst., 9, Q04029, DOI: 10.1029/2007GC001,893.

    Article  Google Scholar 

  • Korte M., Donadini F. and Constable C.G., 2009. Geomagnetic field for 0–3 ka: 2. A new series of time-varying global models. Geochem. Geophys. Geosyst., 10, Q06008, DOI: 10.1029/2008GC002297.

    Article  Google Scholar 

  • Kovacheva M., 1997. Archaeomagnetic database from Bulgaria: the last 8000 years. Phys. Earth. Plan. Inter., 102, 145–151.

    Article  Google Scholar 

  • Kovacheva M., Hedley I., Jordanova N., Kostadinova M. and Gigov V., 2004. Archaeomagnetic dating of archaeological sites from Switzerland and Bulgaria. J. Archaeol. Sci., 31, 1463–1479.

    Article  Google Scholar 

  • Kovacheva M., Boyadziev Y., Kostadinova M., Jordanova N. and Donadini F., 2009. Updated archeomagnetic data set of the past eight millennia from the Sofia laboratory, Bulgaria. Geochem. Geophys. Geosyst., 10, Q05002, DOI: 10.1029/2008GC002347.

    Article  Google Scholar 

  • Lanos Ph., 2004. Bayesian inference of calibration curves: application to archaeomagnetism. In: Buck C. and Millard A. (Eds.), Tools for Constructing Chronologies: Crossing Disciplinary Boundaries. Lecture Notes in Statistics., 177, 43–82, Springer-Verlag, London, U.K.

    Chapter  Google Scholar 

  • Lanos Ph., Le Goff M., Kovacheva M. and Schnepp E., 2005. Hierarchical modelling of archaeomagnetic data and curve estimation by moving average technique. Geophys. J. Int., 160, 440–476.

    Article  Google Scholar 

  • Le Goff M., Gallet Y., Genevey A. and Warmé N., 2002. On archaeomagnetic secular variation curves and archaeomagnetic dating. Phys. Earth Planet. Inter., 134, 203–211.

    Article  Google Scholar 

  • Lowrie W., 1990. Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophys. Res. Lett., 17, 159–162.

    Article  Google Scholar 

  • Marton P., 2010. Two thousand years of geomagnetic field direction over central Europe revealed by indirect measurements. Geophys. J. Int., 181, 261–268.

    Article  Google Scholar 

  • McIntosh G. and Catanzariti G., 2006. An introduction to archaeomagnetic dating. Geochronometria, 25, 11–18.

    Google Scholar 

  • Noel M. and Batt C., 1990. A method for correcting geographically separated remanence directions for the purpose of archaeomagnetic dating. Geophys. J. Int., 102, 753–756.

    Article  Google Scholar 

  • Pavón-Carrasco F.J., Osete M.L., Torta J.M. and Gaya-Piqué L.R., 2009. A regional archeomagnetic model for Europe for the last 3000 years, SCHA.DIF.3K: applications to archeomagnetic dating. Geochem. Geophys. Geosyst., 10, Q03013, DOI: 10.1029/2008GC002244

    Article  Google Scholar 

  • Pavón-Carrasco F.J., Rodríguez-González J., Osete M.L. and Torta J.M., 2011. A Matlab tool for archaeomagnetic dating. J. Archaeol. Sci., 38, 408–419.

    Article  Google Scholar 

  • Schnepp E. and Lanos Ph., 2005. Archaeomagnetic secular variation in Germany during the past 2500 years. Geophys. J. Int., 163, 479–490.

    Article  Google Scholar 

  • Schnepp E. and Lanos Ph., 2006. A preliminary secular variation reference curve for archaeomagnetic dating in Austria. Geophys. J. Int., 166, 91–96.

    Article  Google Scholar 

  • Shuey R., Cole E. and Mikulich M., 1970. Geographic correction of archaeomagnetic data. J. Geomagn. Geoelectr., 41, 485–489.

    Article  Google Scholar 

  • Spassov S., Hus J., Geeraerts R. and F. Heller., 2008. Archaeomagnetic dating of a High Middle Age likely iron working site in Corroy-le-Grand (Belgium). Phys. Chem. Earth., 33, 544–556.

    Article  Google Scholar 

  • Tema E., Hedley I. and Lanos Ph., 2006. Archaeomagnetism in Italy: a compilation of data including new results and a preliminary Italian secular variation curve. Geophys. J. Int., 167, 1160–1171.

    Article  Google Scholar 

  • Tema E. and Lanza R., 2008. Archaeomagnetic study of a lime kiln at Bazzano (northern Italy). Phys. Chem. Earth., 33, 534–543.

    Article  Google Scholar 

  • Tema E. and Kondopoulou, D., 2011. Secular variation of the Earth’s magnetic field in the Balkan region during the last 8 millennia based on archaeomagnetic data. Geophys. J. Int., 186, 603–614.

    Article  Google Scholar 

  • Tema, E. Fantino F., Ferrara E., Lo A., Morales J., Goguitchaichvili A., Camps P., Barello F. and Gulmini M., 2013. Combined archaeomagnetic and thermoluminescence study of a brick kiln excavated at Fontanetto Po (Vercelli, Northen Italy). J. Archaeol. Sci., 40, 2025–2035.

    Article  Google Scholar 

  • Thellier E. and Thellier O., 1959. Sur l’intensité du champ magnétique terrestre dans le passé historique et géologique. Ann. Géophys., 15, 285–376 (in French).

    Google Scholar 

  • Zananiri I., Batt C., Lanos Ph., Tarling D. and Linford P., 2007. Archaeomagnetic secular variation in the UK during the past 4000 years and its application to archaeomagnetic dating. Phys. Earth Planet. Inter., 160, 97–107.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souad Ech-Chakrouni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ech-Chakrouni, S., Hus, J. & Spassov, S. Constraints of archaeomagnetic dating and field intensity determinations in three ancient tile kilns in Belgium. Stud Geophys Geod 57, 585–604 (2013). https://doi.org/10.1007/s11200-012-0779-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-012-0779-1

Keywords

Navigation