Skip to main content

Advertisement

Log in

Electrical conductivity at mid-mantle depths estimated from the data of Sq and long period geomagnetic variations

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

We present results of a classical global induction analysis of the geomagnetic variation data in the range of daily Sq variations, as well as for long period variations within the period range of about 8 to 400 days. The Sq data from 88 to 94 world observatories are processed in two ways, first by constructing and analyzing average monthly daily variations for the whole months of the International Quiet Sun Year (IQSY) 1995, and second by analyzing the individual, especially quiet Q* daily records from the same year. The electrical images of the Sq response functions obtained via the Schmucker’s ρ* — z* procedure show a good fit with results of other induction studies, though especially our global impedance phases show a larger scatter than two other published data sets used for comparison.

The long period variations from three 3-years’ intervals with different solar and geomagnetic activities and for 44 to 57 world observatories have been processed by power spectral and Fourier analyses, as well as by a simplified GDS approach. The induction response functions show a good correspondence with other deep induction studies, the seasonal processing did not, however, allow us to detect any significant effects of the solar/geomagnetic activity on the transfer functions.

The obtained global geomagnetic induction functions along with other two published data sets are analyzed by a bayesian Monte Carlo analysis for the mantle conductivity distribution. We use a modified version of the Monte Carlo method with Markov chains based on an effective, data adaptive Metropolis sampling approach, and simulate samples from the posterior probability distribution of the resistivities in the mantle. Stochastic sampling provides comprehensive maps of the parameter space based on fairly ranking the models according to their ability to explain the experimental data, as well as on respecting the prior information on the model parameters. From four generally formulated and tested priors for the mantle resistivities, the non-informative distribution on strictly increasing conductance is the most non-restricting prior that, at the same, avoids the non-likely high-resistivity tails in the marginal resistivity distributions. A prediction power of the Monte Carlo sampling approach is demonstrated by a comparison of published maximum likelihood bounds on average conductivities in specific mantle zones with those produced simply by computing the average conductivities from the Markov chain of models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banks R.J., 1969. Geomagnetic variations and the electrical conductivity of the Upper Mantle. Geophys. J. R. Astr. Soc., 17, 457–487.

    Google Scholar 

  • Backus G.E. and Gilbert J.F., 1968. The resolving power of gross Earth data. Geophys. J. R. Astr. Soc., 16, 169–205.

    Google Scholar 

  • Backus G.E. and Gilbert J.F., 1970. Uniqueness in the inversion of inaccurate gross Earth data. Phil. Trans. R. Soc. Lond. A, 266, 187–269.

    Google Scholar 

  • Berdichevski M.N., Vanijan L.L., Lagutinskaja V.P., Rotanova N.M. and Fajnberg E.B., 1970. Experiment with the frequency sounding of the Earth using the results of spherical analysis of geomagnetic field variations. Geomagnetism and Aeronomy (Geomagnetizm i Aeronomiya), X, Moscow, 374–377 (in Russian).

    Google Scholar 

  • Campbell W.H. and Schiffmacher E.R., 1986. A comparison of upper mantle sub continental electrical conductivity for North America, Europe and Asia. J. Geophys., 59, 56–61.

    Google Scholar 

  • Constable S.C., Parker R.L. and Constable C.G., 1987. Occam’s inversion — a practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics, 52, 289–300.

    Article  Google Scholar 

  • Constable S., 1993. Constraints on mantle electrical conductivity from field and laboratory measurements. J. Geomagn. Geoelectr., 45, 707–728.

    Google Scholar 

  • Constable S. and Constable C., 2004, Observing geomagnetic induction in magnetic satellite measurements and associated implications for mantle conductivity. Geochem. Geophys. Geosyst., 5, Q01006.

    Article  Google Scholar 

  • Dmitriev V.I., Rotanova N.M., Zakharova O.K. and Fiskina M.V., 1987. Models of deep electrical conductivity obtained from data on global magnetic variational sounding. Pure Appl. Geophys., 125, 409–426.

    Article  Google Scholar 

  • Everett M.E. and Schultz A., 1996. Geomagnetic induction in a heterogenous sphere: Azimuthally symmetric test computations and the response of an undulating 660-km discontinuity. J. Geophys. Res., 101, 2765–2783.

    Article  Google Scholar 

  • Grandis H., Menvielle M. and Roussignol M., 1999. Bayesian inversion with Markov chains — I.: The magnetotelluric one-dimensional case. Geophys. J. Int., 138, 757–768.

    Article  Google Scholar 

  • Haario H., Saksman E. and Tamminen J., 2003. Componentwise Adaptation for MCMC. Preprint 342, Department of Mathematics, University of Helsinki, Finland, 20 pp. (http://mathstat.helsinki.fi/reports/Preprint342.ps).

    Google Scholar 

  • Haario H., Laine M., Lehtinen M., Saksman E. and Tamminen J., 2004. Markov chain Monte Carlo methods for high dimensional inversion in remote sensing. J. R. Stat. Soc. Ser. B-Stat. Methodol., 66, 591–607.

    Article  Google Scholar 

  • Hansen P.C., 1992. Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev., 34, 561–580.

    Article  Google Scholar 

  • Honkura Y. and Matsushima M., 1998. Electromagnetic response of the mantle to long-period geomagnetic variations over the globe. Earth Planets Space, 50, 651–662.

    Google Scholar 

  • Barton C.E., Baldwin R.T., Barraclough D.R., Bushati S., Chiappini M., Cohen Y., Coleman R., Hulot G., Kotze P., Golovkov V.P., Jackson A., Langel R.A., Lowes F.J., McKnight D.J., Macmillan S., Newitt L.R., Peddie N.W., Quinn J.M., Sabaka T.J., 1996. International geomagnetic reference field, 1995 revision. Geophys. J. Int., 125, 318–321.

    Article  Google Scholar 

  • Kuvshinov A.V., Olsen N., Avdeev D.B. and Pankratov O.V., 2002. Electromagnetic induction in the oceans and the anomalous behaviour of coastal C-responses for periods up to 20 days. Geophys. Res. Lett., 29, Art.No.1595, DOI: 10.1029/2001GL014409.

  • Kuvshinov A. and Olsen N., 2006. A global model of mantle conductivity derived from 5 years of CHAMP, Oersted, and SAC-C magnetic data. Geophys. Res. Lett., 33, Art.No.L18301, DOI: 10.1029/2006GL027083.

  • Medin A.E., Parker R.L. and Constable S., 2007. Making sound inferences from geomagnetic sounding. Phys. Earth Planet. Inter., 160, 51–59.

    Article  Google Scholar 

  • Olsen N., 1992. Day-to-day C-response estimation for Sq from 1 cpd to 6 cpd using the Z:Ymethod. J. Geomagn. Geoelectr., 44, 433–447.

    Google Scholar 

  • Olsen N., 1998. The electrical conductivity of the mantle beneath Europe derived from C-responses from 3 to 720 hr. Geophys. J. Int., 133, 298–308.

    Article  Google Scholar 

  • Olsen N., 1999a. Long-period (30 days — 1 year) electromagnetic sounding and the electrical conductivity of the lower mantle beneath Europe. Geoph. J. Int., 138, 179–187.

    Article  Google Scholar 

  • Olsen N., 1999b. Induction studies with satellite data. Surv. Geophys., 20, 309–340.

    Article  Google Scholar 

  • Parker R.L., 1980. The inverse problem of electromagnetic induction: existence and construction of solutions based on incomplete data. J. Geophys. Res., 85, 4421–4428.

    Article  Google Scholar 

  • Pěč K., Martinec Z. and Pěčová J., 1985. Matrix approach to the solution of electromagnetic induction in a spherically layered Earth. Stud. Geophys. Geod., 29, 139–162.

    Article  Google Scholar 

  • Praus O. and Pěčová J., 1994. Deep electrical structure under Central Europe. Stud. Geophys. Geod., 38, 57–70.

    Article  Google Scholar 

  • Roberts R.G., 1984. The long period electromagnetic response of the Earth. Geophys. J. R. Astron. Soc., 78, 547–572.

    Google Scholar 

  • Roberts R.G., 1986. Global electromagnetic induction. Surv. Geophys., 8, 339–374.

    Article  Google Scholar 

  • Rokityanskij I.I., 1982. Geoelectromagnetic Investigation of the Earth’s Crust and Mantle. Springer-Verlag, New York, 381 pp.

    Google Scholar 

  • Schultz A. and Semenov V.Yu., 1993. Modeling of the mid-mantle geoelectrical structure. Izv.-Phys. Solid Earth, 10, 39–43.

    Google Scholar 

  • Schmucker U., 1970. Anomalies of geomagnetic variations in the southwestern United States. Bull. Scripts Inst. Oceanogr., 13, 55–86.

    Google Scholar 

  • Schmucker U., 1987. Substitute conductors for electromagnetic response estimates. Pure Appl. Geophys., 125, 341–367.

    Article  Google Scholar 

  • Schmucker U., 1999. A spherical harmonic analysis of the solar daily variations in the years 1964–1965; response estimates and source fields for global induction — I. Methods. Geoph. J. Int., 136, 439–454.

    Article  Google Scholar 

  • Schultz A. and Larsen J.C., 1987. On electrical conductivity of mid-mantle — I. Calculation of equivalent scalar magnetotelluric response functions. Geophys. J. R. Astron. Soc., 88, 733–761.

    Google Scholar 

  • Semenov V.Yu. and Kharin E.P., 1985a. Analysis of geomagnetic hourly means for deep global sounding. Geomagnetism and Aeronomy (Geomagnetizm i Aeronomiya), 25, 341–342 (in Russian).

    Google Scholar 

  • Semenov V.Yu. and Kharin E.P., 1985b. The geomagnetic field continuum spectrum method for obtaining the apparent resistivity curve. Geomagnetism and Aeronomy (Geomagnetizm i Aeronomiya), 25, 482–487 (in Russian).

    Google Scholar 

  • Semenov V.Yu. and Kharin E.P., 1988. Electromagnetic investigations at periods longer than four hours. Geomagnetic Researches, No.31, Acad. Sci. USSR, Soviet Geophys. Committee, Moscow, Russia, 50–58 (in Russian).

    Google Scholar 

  • Semenov V.Yu., 1998. Regional conductivity structures of the Earth’s mantle. Publ. Inst. Geophys. Pol. Acad. Sci., C-95(302), 119 pp.

    Google Scholar 

  • Semenov V.Yu. and Józwiak W., 1999. Model of the geoelectrical structure of the mid- and lower mantle in the Europe-Asia region. Geophys. J. Int., 138, 549–552.

    Article  Google Scholar 

  • Semenov V.Yu. and Jozwiak W., 2006. Lateral variations of the mid-mantle conductance beneath Europe. Tectonophysics, 416, 279–288.

    Article  Google Scholar 

  • Semenov V.Yu., Vozár J. and Shuman V., 2007. A new approach to gradient geomagnetic sounding. Izv.-Phys. Solid Eart, 43, 592–596.

    Article  Google Scholar 

  • Velímský J., Martinec Z. and Everett M., 2006. Electrical conductivity in the Earth’s mantle inferred from CHAMP satellite measurements — I. Data processing and 1-D inversion. Geophys. J. Int., 166, 529–542.

    Article  Google Scholar 

  • Vozár J. and Semenov V.Yu., 2010. Compatibility of induction methods for mantle soundings. J. Geophys. Res., 115, B03101, DOI: 10.1029/2009JB006390.

    Article  Google Scholar 

  • Weidelt P., 1972. The inverse problem of geomagnetic induction. Z. Geophys., 38, 257–289.

    Google Scholar 

  • Weiss C.J. and Everett M.E., 1998. Geomagnetic induction in a heterogeneous sphere: fully threedimensional test computations and the response of a realistic distribution of oceans and continents. Geophys. J. Int., 135, 650–662.

    Article  Google Scholar 

  • Wessel P. and Smith W.H.F., 1991. Free software helps map and display data. EOS Trans. AGU, 72, 441.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Pek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Praus, O., Pěčová, J., Červ, V. et al. Electrical conductivity at mid-mantle depths estimated from the data of Sq and long period geomagnetic variations. Stud Geophys Geod 55, 241–264 (2011). https://doi.org/10.1007/s11200-011-0014-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-011-0014-5

Keywords

Navigation