Skip to main content
Log in

The choice of the spherical radial basis functions in local gravity field modeling

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

The choice of the optimal spherical radial basis function (SRBF) in local gravity field modelling from terrestrial gravity data is investigated. Various types of SRBFs are considered: the point-mass kernel, radial multipoles, Poisson wavelets, and the Poisson kernel. The analytical expressions for the Poisson kernel, the point-mass kernel and the radial multipoles are well known, while for the Poisson wavelet new closed analytical expressions are derived for arbitrary orders using recursions. The performance of each SRBF in local gravity field modelling is analyzed using real data. A penalized least-squares technique is applied to estimate the gravity field parameters. As follows from the analysis, almost the same accuracy of gravity field modelling can be achieved for different types of the SRBFs, provided that the depth of the SRBFs is chosen properly. Generalized cross validation is shown to be a suitable technique for the choice of the depth. As a good alternative to generalized cross validation, we propose the minimization of the RMS differences between predicted and observed values at a set of control points. The optimal regularization parameter is determined using variance component estimation techniques. The relation between the depth and the correlation length of the SRBFs is established. It is shown that the optimal depth depends on the type of the SRBF. However, the gravity field solution does not change significantly if the depth is changed by several km. The size of the data area (which is always larger than the target area) depends on the type of the SRBF. The point-mass kernel requires the largest data area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blaha G., Blessette R.P. and Hadgigeorge G., 1986. Global point-mass adjustment of the oceanic geoid based on satellite altimetry. Marine Geodesy, 10, 97–129.

    Article  Google Scholar 

  • Chambodut A., Panet I., Mandea M., Diament M., Holschneider M. and Jamet O., 2005. Wavelet frames: an alternative to spherical harmonic representation of potential fields. Geophys. J. Int., 163, 875–899.

    Google Scholar 

  • Förstner W., 1979. Ein Varfahren zur Schätzung von Variaz-und Kovarianzkomponenten. Allgemeine Vermessungs-Nachrichten, 86, 446–453.

    Google Scholar 

  • Freeden W., Gervens T. and Schreiner M., 1998. Constructive Approximation of the Sphere (with Applications to Geomathematics). Oxford Science Publication, Clarendon Press.

  • Hardy R.L. and Göpfert W.M., 1975. Least squares prediction of gravity anomalies, geoidal undulations, and deflections of the vertical with multiquadric harmonic functions. Geophys. Res. Lett., 2, 423–426.

    Article  Google Scholar 

  • Heikkinen M., 1981. Solving the Shape of the Earth by Using Digital Density Models. Report 81(2), Finnish Geodetic Institute, Helsinki, Finland.

    Google Scholar 

  • Holschneider M., Chambodut A. and Mandea M., 2003. From global to regional analysis of the magnetic field on the sphere using wavelet frames. Phys. Earth Planet. Inter., 135, 107–124.

    Article  Google Scholar 

  • Klees R. and Wittwer T., 2007. A data-adaptive design of a spherical basis function network for gravity field modeling. In: Tregoning P. and Rizos C. (Eds.), Dynamic Planet-Monitoring and Understanding a Dynamic Planet with Geodetic and Oceanographic Tools. IAG Symposia, 130, Springer-Verlag, Berlin, Heidelberg, 303–328.

    Google Scholar 

  • Klees R., Tenzer R., Prutkin I. and Wittwer T., 2008. A data-driven approach to local gravity field modeling using spherical radial basis functions. J. Geodesy, 82, 457–471, doi: 10.1007/s00190-007-0196-3.

    Article  Google Scholar 

  • Koch K.R. and Kusche J., 2002. Regularization of geopotential determination from satellite data by variance components. J. Geodesy, 76, 259–268.

    Article  Google Scholar 

  • Krarup T., 1969. A Contribution to the Mathematical Foundation of Physical Geodesy. Report 44, Danish Geodetic Institute, Copenhagen, Denmark.

    Google Scholar 

  • Kusche J., 2003. A Monte-Carlo technique for weight estimation in satellite geodesy. J. Geodesy, 76, 641–652.

    Article  Google Scholar 

  • Lehmann R., 1993. The method of free-positioned point masses-geoid studies on the Gulf of Bothnia. Bulletin Géodésique, 67, 31–40.

    Article  Google Scholar 

  • Lehmann R., 1995. Gravity field approximation using point masses in free depths. International Association of Geodesy Buleltin, Section IV, No.1, 129–140.

  • Lelgemann D., 1981. On numerical properties of interpolation with harmonic kernel functions. Manuscripta Geodaetica, 6, 157–191.

    Google Scholar 

  • Lelgemann D. and Marchenko A.N., 2001. On Concepts for Modeling the Earth’s Gravity Field. Deutsche Geodätische Kommission bei der Bayerischen Akademie der Wissenschaften, Reihe A, Heft Nr. 117, München, Germany.

  • Marchenko A.N., 1998. Parameterization of the Earth’s Gravity Field: Point and Line Singularities. Lviv Astronomical and Geodetical Society, Lviv, Ukraine.

    Google Scholar 

  • Panet I., Chambodut A., Panet I., Diament M., Holschneider M. and Jamet O., 2006. New insights on intraplate volcanism in French Polynesia from wavelet analysis of GRACE, CHAMP, and sea surface data. J. Geophys. Res., 111, B09403, doi: 10.1029/2005JB004141.

    Article  Google Scholar 

  • Reilly J.P. and Herbrechtsmeier E.H., 1978. A systematic approach to modeling the geopotential with point mass anomalies. J. Geophys. Res., 83, 841–844.

    Article  Google Scholar 

  • Sansò F. and Tscherning C.C., 2003. Fast spherical collocation: theory and examples. J. Geodesy, 77, 101–112.

    Article  Google Scholar 

  • Schmidt M., Kusche J., van Loon J., Shum C.K., Han S.C. and Fabert O., 2005. Multi-resolution representation of regional gravity data. In: Jekeli C., Bastos L. and Fernandes J. (Eds.), Gravity, Geoid and Space Missions. Springer-Verlag, Berlin, Heiderlberg, New York, 167–172.

    Chapter  Google Scholar 

  • Schmidt M., Fengler M., Mayer-Gürr T., Eicker A., Kusche J., Sanchez J. and Han S.C., 2007. Regional gravity modelling in terms of spherical base functions. J. Geodesy, 8, 17–38, doi: 10.1007/s00190-006-0101-5.

    Google Scholar 

  • Sünkel H., 1981. Point Mass Models and the Anomalous Gravitational Field. Report No. 328, The Ohio State University, Dept of Geod Sciences, Columbus, Ohio.

    Google Scholar 

  • Sünkel H., 1983. The Generation of a Mass Point Model from Surface Gravity Data. Report No. 353, The Ohio State University, Dept of Geod Sciences, Columbus, Ohio.

    Google Scholar 

  • Tscherning C.C., 1986. Functional methods for gravity field approximation. In: Sünkel H. (Ed.), Mathematical and Numerical Techniques in Physical Geodesy. Lecture Notes in Earth Sciences, 7, Springer-Verlag, Berlin, Heidelberg, 3–47.

    Chapter  Google Scholar 

  • Vermeer M., 1992. Geoid determination with mass point frequency domain inversion in the Mediterranean. Mare Nostrum, GEOMED Report 2, Madrid, 109–119.

  • Vermeer M., 1995. Mass point geopotential modeling using fast spectral techniques; historical overview, toolbox description, numerical experiment. Manuscripta Geodaetica, 20, 362–378.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Tenzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tenzer, R., Klees, R. The choice of the spherical radial basis functions in local gravity field modeling. Stud Geophys Geod 52, 287–304 (2008). https://doi.org/10.1007/s11200-008-0022-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-008-0022-2

Key words

Navigation