Skip to main content
Log in

Analysis of the natural remanent magnetization of rocks by measuring the efficiency ratio through alternating field demagnetization spectra

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

The REM(AF) method is a new tool for the analysis of the origin and alternating field demagnetization coercivity spectra of the remanent magnetization. We applied this method on precambrian Gila diabase sheets from Arizona in order to identify the high coercivity magnetic carrier, and on artificially shocked Rowley Regis basalt from UK in order to analyze the effect of the shock on the natural remanent magnetization.

In the Gila diabase the high coercivity magnetic component was identified to be most likely represented by the acicular magnetite (increase in the efficiency ratio in the high coercivity region).

In the Rowley Regis basalt, the REM(AF) analysis revealed that comparing to NRM, the shock produced a different distribution of the AF demagnetization coercivity spectra due to the occurrence of the Shock Remanent Magnetization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cisowski S.M., Dunn J.R., Fuller M. and Wasilewski P.J., 1990. NRM:IRM(s) demagnetization plots of intrusive rocks and the origin of their NRM. Tectonophysics, 184, 35–54.

    Article  Google Scholar 

  • Cisowski S.M. and Fuller M., 1986. Lunar paleointensities via the IRMs normalization method and the early magnetic history of the Moon. In: Hartmann W.K., Phillips R.J. and Taylor G.J. (Eds.), Origin of the Moon. Lunar and Planetary Institute Houston, 411–424.

    Google Scholar 

  • Day R., Fuller, M.D. and Schmidt V.A., 1977. Hysteresis properties of titano-magnetites: grain size and composition dependence. Phys. Earth Planet. Inter., 13, 260–266.

    Article  Google Scholar 

  • Dunlop D.J., 2002. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc). 2. Application to data for rocks, sediments and soils. J. Geophys. Res., 107, doi:10.1029/2001JB000487.

    Google Scholar 

  • French B.M., 1998. Traces of Catastrophe: A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures. Technical Report, LPI-Contrib-954, Lunar and Planetary Institute, Houston, 120 pp.

    Google Scholar 

  • Fuller M., Cisowski S., Hart M., Haston R. and Schmidtke E., 1988. NRM:IRM(s) demgnetization plots; an aid to the interpretation of natural remanent magnetization. Geophys. Res. Lett., 15, 518–521.

    Article  Google Scholar 

  • Fuller M., 1974. Lunar magnetism. Rev. Geophys., 12, 23–70.

    Article  Google Scholar 

  • Gattacceca J., Rochette P. and Denise M., 2003. Magnetic properties of a freshly fallen LL ordinary chondrite: the Bensour meteorite. Phys. Earth Planet. Inter., 140, 343–358.

    Article  Google Scholar 

  • Gattacceca J. and Rochette P., 2004. Toward a robust paleointensity estimate for meteorites. Earth Planet. Sci. Lett., 227, 377–393.

    Article  Google Scholar 

  • Jarrard R.D. and Cockerham R.S., 1975. Reliability of paleolatitudes from Pacific DSDP sediment cores. EOS Trans. Am. Geophys. Union, 56, 977–978.

    Google Scholar 

  • Kletetschka G., Acuna M.H., Kohout T., Wasilewski P.J. and Connerney J.E.P., 2004. An empirical scaling law for acquisition of thermoremanent magnetization. Earth Planet. Sci. Lett., 226, 521–528.

    Article  Google Scholar 

  • Martelli G. and Newton G., 1977. Hypervelocity cratering and impact magnetization of basalt. Nature, 269, 478–480.

    Article  Google Scholar 

  • Melosh H.J., 1989. Impact Cratering: A Geologic Process. Oxford Monographs on Geology and Geophysics No.11, Oxford University Press, New York, Oxford, 245 pp.

    Google Scholar 

  • Rochette P., Mathe P., Esteban L., Rakoto H., Bouchez J., Liu Q. and Torrent J., 2005. Nonsaturation of the defect moment of goethite and fine-grained hematite up to 57 Teslas. Geophys. Res. Lett., 32, doi: 10.1029/2005GL024196.

  • Srnka L.J., Martelli G., Newton G., Cisowski S.M., Fuller M. and Schaal R.B., 1979. Magnetic field and shock effects and remanent magnetization in a hypervelocity impact experiment. Earth Planet. Sci. Lett., 42, 127–137.

    Article  Google Scholar 

  • Verrier V. and Rochette P., 2002. Estimating peak currents at ground lightning impact using remanent magnetization. Geophys. Res. Let., 29, 10.1029/2002GL015207.

  • Yu Y.J. 2006. How accurately can NRM/SIRM determine the ancient planetary magnetic field intensity? Earth Planet. Sci. Lett., 250, 27–37.

    Article  Google Scholar 

  • Yu Y.J., Tauxe L. and Gee J.S., 2007. A linear field dependence of thermoremanence in low magnetic fields. Phys. Earth Planet. Inter., 162, 244–248.

    Article  Google Scholar 

  • Wasilewski P.J., 1977. Magnetic and microstructural properties of some lodestones. Phys. Earth Planet. Inter., 15, 349–362.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kohout.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohout, T., Kletetschka, G., Donadini, F. et al. Analysis of the natural remanent magnetization of rocks by measuring the efficiency ratio through alternating field demagnetization spectra. Stud Geophys Geod 52, 225–235 (2008). https://doi.org/10.1007/s11200-008-0015-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-008-0015-1

Key words

Navigation