Skip to main content
Log in

Determining the maximum degree of harmonic coefficients in geopotential models by Monte Carlo methods

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

Random errors for the harmonic coefficients of a geopotential model are generated from the matrix of normal equations by a parallel computer applying the Gibbs sampler. This leads to random values for the harmonic coefficients. They are transformed by nonlinear, quadratic transformations to random values for the square roots of degree variances, of mean squares of geoid undulations and gravity anomalies. The expected values of these quantities are not equal to the values of these quantities computed by the estimated harmonic coefficients, due to correlations and errors in the estimation. By hypothesis tests estimated harmonic coefficients distorted by correlations and errors are detected. Applying the tests to the geopotential model ITG-CHAMP01 of the Institute of Theoretical Geodesy in Bonn it is concluded that above the degree 62 the harmonic coefficients cannot add any information to the geopotential model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Colombo O.L., 1981. Global Geopotential Modelling from Satellite-to-Satellite Tracking. Report No. 317, Department of Geodetic Science and Surveying, Ohio State University, Columbus, Ohio, USA.

    Google Scholar 

  • ESA, 1999. Gravity Field and Steady-State Ocean Circulation Mission. ESA Publications Division, ESA SP-1233(1), ESTEC, Noordwijk, The Netherlands.

    Google Scholar 

  • Gelman A., Carlin J.B., Stern H.S. and Rubin D.B., 2004. Bayesian Data Analysis. 2nd Ed., Chapman and Hall, Boca Raton, USA.

    Google Scholar 

  • Gundlich B., Koch K.R. and Kusche J., 2003. Gibbs sampler for computing and propagating large covariance matrices. J. Geodesy, 77. 514–528.

    Article  Google Scholar 

  • Kaula W.M., 1966. Theory of Satellite Geodesy. Blaisdell, Waltham, Mass., USA.

    Google Scholar 

  • Koch K.R., 1999. Parameter Estimation and Hypothesis Testing in Linear Models, 2nd Ed., Springer Verlag, Berlin, Germany.

    Book  Google Scholar 

  • Koch K.R., 2000. Einfuhrung in die Bayes-Statistik. Springer Verlag, Berlin, Germany (in German).

    Book  Google Scholar 

  • Koch K.R., 2002. Monte-Carlo-Simulation fur Regularisierungsparameter. Z. Geodasie, Geoinformation und Landmanagement, 127, 305–309.

    Google Scholar 

  • Koch K.R. and Kusche J., 2002. Regularization of geopotential determination from satellite data by variance components. J Geodesy, 76, 259–268.

    Article  Google Scholar 

  • Koch K.R., Kusche J., Boxhammer C. and Gundlich B., 2004. Parallel Gibbs sampling for computing and propagating large covariance matrices. Z. Geodasie, Geoinformation und Landmanagement, 129, 32–42.

    Google Scholar 

  • Mayer-Gurr T., Ilk K.H., Eicker A. and Feuchtinger M., 2005. ITG-CHAMP01: A CHAMP gravity field model from short kinematical arcs of a one-year observation period. J. Geodesy, 78, 462–480.

    Article  Google Scholar 

  • Reigber Ch., Schwintzer P. and Luhr H., 1999. The CHAMP geopotential mission. Boll. Geof. Teor. Appl., 40, 285–289.

    Google Scholar 

  • Reigber Ch., Jochmann H., Wunsch J., Petrovic S., Schwintzer P., Barthelmes F., Neumayer K.-H., Konig R., Forste Ch., Balmino G., Biancale R., Lemoine J.-M., Loyer S. and Perosanz F., 2005a. Earth gravity field and seasonal variability from CHAMP. In: Ch. Reigber, H. Luhr, P. Schwintzer and J. Wickert (Eds.), Earth Observation with CHAMP-Results from Three Years in Orbit. Springer Verlag, Berlin, Germany, 25–30.

    Chapter  Google Scholar 

  • Reigber Ch., Schwintzer P., Stubenvoll R., Schmidt R., Flechtner F., Meyer U., Konig R., Neumayer H., Forste Ch., Barthelmes F., Shu S.Y., Balmino G., Biancale R., Lemoine J.-M., Meixner H. and Raimondo J.C., 2005b. A high resolution global gravity field model combining CHAMP and GRACE satellite mission and surface data: EIGEN-CG01C. J. Geodesy (in print).

  • Schwintzer P., Reigber Ch., Bode A., Kang Z., Zhu S.Y., Massmann F.-H., Raimondo J.C., Biancale R., Balmino G., Lemoine J.M., Moynot B., Marty J.C., Barlier F. and Boudon Y., 1997. Long-wavelength global gravity field models: GRIM4-S4, GRIM4-C4. J. Geodesy, 71, 189–208.

    Article  Google Scholar 

  • Sjoberg L.E., 1987. The estimation of the power spectrum and reliability of models of the Earth’s gravity field by intercomparison of independent models. Manuscripta Geodaetica, 12, 104–112.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koch, K.R. Determining the maximum degree of harmonic coefficients in geopotential models by Monte Carlo methods. Stud Geophys Geod 49, 259–275 (2005). https://doi.org/10.1007/s11200-005-0009-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-005-0009-1

Keywords

Navigation