Skip to main content
Log in

Identification of magnetic minerals by scanning electron microscope and application of ferrofluid

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

Magnetic minerals are mostly identified by a combination of rock magnetic and microscopic techniques and the ferrofluid method in combination with an optical microscope was applied during the last decades. But today, scanning electron microscopy (SEM) is preferred for the observation of mineral phases because its depth of focus and resolving capability at the same magnification. In this study, we report on a method, which allows ferrofluid application under the SEM. We coated a polished basalt sample containing titanomagnetite grains with high demagnetizing fields, with a colloidal suspension containing magnetite particles (ferrofluid) ranging in size between 11 and 20 nm. Due to large gradients of multidomain grains the ferrofluid particles adhered to their surfaces. Other grains of similar composition present (ilmenohematite) but with low demagnetizing fields do not generate large magnetic gradients and therefore do not attract the colloidal particles. Upon evaporation of the ferrofluid and covering the sample with conducting material the magnetic grains with high demagnetizing field are easily identifiable under the scanning electron microscope. The different mineralogy observed by this method is confirmed by temperature dependent variation of magnetic susceptibility, revealing titanomagnetite and ilmenohematite as magnetic carriers in the basaltic samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aragón R., Buttrey D.J., Shepherd J.P. and Honig J.M., 1985. Influence of nonstoichiometry on the Verwey transition. Phys. Rev. B, 31, 430–436.

    Article  Google Scholar 

  • Bitter F., 1931. On Inhomogeneities in the magnetization of ferromagnetic materials. Physical Review, 38, 1903.

    Article  Google Scholar 

  • Cloete M., Hart R.J., Schmid H.K., Drury M., Demanet C.M. and Sankar K.V., 1999, Characterization of magnetite particles in shocked quartz by means of electron-and magnetic force microscopy: Vredefort, South Africa. Contrib. Mineral. Petrol., 137, 232–245.

    Article  Google Scholar 

  • Evans M.E. and Wayman M.L., 1997. Electron microscopy of small magnetic particles in geonomy. Phys. Earth Planet. Inter., 103, 343–348.

    Article  Google Scholar 

  • Goldstein J., Newbury D.E., Joy D.C., Lyman C.E., Echlin P., Lifshin E., Sawyer L.C. and Michael J.R., 2003. Scanning Electron Microscopy and X-ray Microanalysis. Kluwer Academic/Plenum Publishers, New York, 689 pp.

    Book  Google Scholar 

  • Just J., Kontny A., de Wall H., Hirt A.M. and Martin-Hernandez F., 2004. Development of magnetic fabrics during hydrothermal alteration in the Soultz-sous-Forets granite from the EPS-1 borehole, Upper Rhine Graben. In: Martin-Hernandez F., Luneburg C.M., Aubourg C. and Jackson M. (Eds.), Magnetic Fabric: Methods and Apllications. Geol. Soc. London Spec. Publ., 238, 509–526.

  • Kletetschka G., 2001. Remanent magnetism record in a recent basaltic tree mold. IRM Quarterly, 11(4), 2–3.

    Google Scholar 

  • Kletetschka G. and Banerjee S.K., 1995. Magnetic stratigraphy of Chinese loess as a record of natural fires. Geophys. Res. Lett., 22, 1341–1343.

    Article  Google Scholar 

  • Kontny A., de Wall H., Sharp T.G. and Pósfai M., 2000. Mineralogy and magnetic behavior of pyrrhotite from a 260°C section at the KTB drilling site, Germany. Am. Miner., 85, 1416–1427.

    Article  Google Scholar 

  • Kontny A., Engelmann R., Frederichs T., Lattard D. and Vahle C., 2003a. Low-Temperature Magnetic Behavior: Diagnostic for the Interpretation of Magnetic Mineralogy of Basalt? EOS Trans., American Geophysical Union, 84(46), F526.

    Google Scholar 

  • Kontny A., Vahle C. and de Wall H., 2003b. Characteristic magnetic behavior of subaerial and submarine lava units from the Hawaiian Scientific Drilling Project (HSDP-2). Geochem. Geophys. Geosyst., 4, Art. No. 8703.

    Article  Google Scholar 

  • McEnroe S.A., Langenhorst F., Robinson P., Brimiley G.D. and Shaw C.S.J., 2004. What is magnetic in the lower crust? Earth Planet. Sci. Lett., 226, 175–192.

    Article  Google Scholar 

  • Miyahara Y., 1972. Impurity Effects on the Transition Temperature of Magnetite. J. Phys. Soc. Jpn., 32, 629–634.

    Article  Google Scholar 

  • Muxworthy A.R. and Heider F., 2001. Rock magnetic investigation of historical lavas used in palaeointensity studies. Stud. Geophys. Geod., 45, 283–296.

    Article  Google Scholar 

  • Otofuji Y., Uno K., Higashi T., Ichikawa T., Ueno T., Mishima T. and Matsuda T., 2000, Secondary remanent magnetization carried by magnetite inclusions in silicates: a comparative study of unremagnetized and remagnetized granites. Earth Planet. Sci. Lett., 180, 271–285.

    Article  Google Scholar 

  • Pósfai M., Sharp T.G. and Kontny A., 2000. Pyrrhotite varieties from the 9.1-km deep borehole of the KTB project. Am. Miner., 85, 1406–1415.

    Article  Google Scholar 

  • Shau Y.H., Torii M., Horng C.-S. and Peacor D.R., 2000. Subsolidus evolution and alteration of titanomagnetite in ocean ridge basalts from Deep sea Drilling Project/Ocean Drilling Program Hole 504B, leg 83: implications for the timing of magnetization. J. Geophys. Res., 105(B10), 23,635–23,649.

    Article  Google Scholar 

  • Soffel H.-C., 1981. Domain structure of natural fine-grained pyrrhotite in a rock matrix (diabase). Phys. Earth Planet. Inter., 26, 98–106.

    Article  Google Scholar 

  • Weil A.B. and Van der Voo R., 2002. Insights into the mechanism for orogen-related carbonate remagnetization from growth of authigenic Fe-oxide: A scanning electron microscopy and rock magnetic study of Devonian carbonates from northern Spain. J. Geophys. Res., 107, doi 10.1029/2001JB000200.

  • Yellen B.B., Fridman G. and Friedman G., 2004. Ferrofluid lithography. Nanotechnology, 15, S562–S565.

    Article  Google Scholar 

  • Zapletal K., 1993. Effect of intergrowths of the ferromagnetic and antiferromagnetic phases on the rock magnetic properties of natural pyrrhotites. Phys. Earth Planet. Inter., 76, 151–162.

    Article  Google Scholar 

  • Zhou W., Van der Voo R. and Peacor D.R., 1997. Single domain and superparamagnetic titanomagnetite with variable Ti content in young ocean-floor basalts: No evidence for rapid alteration. Earth Planet. Sci. Lett., 150, 353–362.

    Article  Google Scholar 

  • Zhou W., Van der Voo R., Peacor D. R. and Zhang Y., 2000. Variable Ti-content and grain size of titanomagnetite as a function of cooling rate in very young MORB. Earth Planet. Sci. Lett., 179, 9–20.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kletetschka, G., Kontny, A. Identification of magnetic minerals by scanning electron microscope and application of ferrofluid. Stud Geophys Geod 49, 153–162 (2005). https://doi.org/10.1007/s11200-005-0002-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-005-0002-8

Keywords

Navigation