Skip to main content
Log in

Gender differences in performance of top cited scientists by field and country

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

In this descriptive study, we aim to show the potential gender differences in academic success, focusing on the top (i.e., most frequently cited) scientists by analyzing the work of more than 94,000 scientists in 21 fields across 43 countries. Our results indicate that female representation in the top tier of scientists strongly varies between countries (11.83%; s.d. = 0.046), with the highest proportion of top women scientists in Finland (20.45%) and the lowest in Saudi Arabia (2.08%). Compared with the total share of females in science, women are underrepresented among the top (i.e., most frequently cited) scholars by 28.52 percentage points. The proportions differ by disciplines, with top women authors best represented in Public Health and Services (36.1%), Communication and Textual Studies (33.7%), Psychology and Cognitive Science (27.5%), and Social Sciences (23%); while the lowest share of women scientists are found in Mathematics and Statistics (6.3%), Engineering (7.2%), and Physics and Astronomy (7.7%). However, despite the low female representation, top women scholars in those three fields conduct (on average) more impactful research than their male colleagues, which is contrary to most other research fields. We also show that female scientific success is positively correlated with a nation’s higher gender equity indicators, lower discriminatory values, and less negative attitudes and preferences towards women. Overall, our findings suggest that scientific fields are still struggling with gender inequality that pervades public life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Extended data is available for this paper at https://osf.io/5dhpm/.

Notes

  1. https://www.aeaweb.org/about-aea/committees/cswep/about.

  2. https://www.apa.org/pi/women/committee/index.

  3. https://www.asanet.org/about-asa/governance/committees-and-task-forces/committee-status-women-sociology.

  4. https://www.aps.org/programs/education/su4w/index.cfm.

  5. https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=5383.

  6. https://www.unesco.org/new/en/unesco-liaison-office-in-new-york/about-this-office/single-view/news/unesco_roundtable_on_gender_gap_in_science_technology_and_i/.

  7. https://research.assaf.org.za/bitstream/handle/20.500.11911/113/2018_genderinsite_pathway_success.pdf?sequence=1&isAllowed=y.

  8. https://genderinsite.net/about/who-we-are.

  9. Field values are subject to some double counts as some scholars are allocated to more than one field.

  10. However, in an interesting study conducted by Thelwall (2020a) on mid-career switches, females in STEM careers are less likely to leave STEM careers than females in other professional fields. Thus, except for immunology and microbiology, STEM fields have a net female gain as female researchers switching fields tend to move to fields with fewer women.

  11. https://info.ils.indiana.edu/gender/index.php.

  12. Papers classified by Scopus as Articles, Reviews, or Conference Papers, published from 1960 to 2017.

  13. All research impact and credit allocation measures exclude self-citations.

  14. See Supporting Materials and Methods for data on estimates of the number of researchers in the higher education sector in each country.

  15. In addition, we also find that the correlation between share of top women authors are correlated with the share of authorships in high-quality Nature Index journals (Pearson’s r = 0.37, P = 0.041, n = 31, Bendels et al., 2018a, b) and among publications in PubMed and arXiv databases (Pearson’s r = 0.384, P = 0.011, n = 43, Holman et al. 2018).

  16. Gender Studies is another subfield with more women than men top scientists (84%), however, only 13 authors from this area are listed in the top 100,000 scientists.

  17. Using individual two sample t-tests, we find that the mean first year of publication of male scientists is statistically smaller (α = 0.05) than that of female in 67 out of 149 subfields.

  18. We caution the readers to carefully interpret findings regarding co-authorship patterns, as norms and culture differ across fields; for example, alphabetical ordering is common in some fields and not others (Henriksen 2019; Ong et al. 2018).

  19. E.g., gender difference in self-selecting to publish in non-English national journals.

  20. For instance, if citation ranking is normalized by field and/or country, one could examine the pattern in gender difference with sample of top-scientists equally representing the top percentile in each field or country.

References

  • Aguinis, H., Ji, Y. H., & Joo, H. (2018). Gender productivity gap among star performers in STEM and other scientific fields. Journal of Applied Psychology, 103(12), 1283.

    Google Scholar 

  • Aguinis, H., Suárez-González, I., Lannelongue, G., & Joo, H. (2012). Scholarly impact revisited. Academy of Management Perspectives, 26(2), 105–132.

    Google Scholar 

  • Aksnes, D. W., Piro, F. N., & Rørstad, K. (2019). Gender gaps in international research collaboration: A bibliometric approach. Scientometrics, 120(2), 747–774.

    Google Scholar 

  • Allen, T. D., Eby, L. T., Poteet, M. L., Lentz, E., & Lima, L. (2004). Career benefits associated with mentoring for protégés: A meta-analysis. Journal of Applied Psychology, 89(1), 127–136.

    Google Scholar 

  • Allison, P. D., & Stewart, J. A. (1974). Productivity differences among scientists: Evidence for accumulative advantage. American Sociological Review, 39(4), 596–606.

    Google Scholar 

  • Allison, P. D., Long, J. S., & Krauze, T. K. (1982). Cumulative advantage and inequality in science. American Sociological Review, 47(5), 615–625.

    Google Scholar 

  • Andersen, H. (2001). The norm of universalism in sciences Social origin and gender of researchers in Denmark. Scientometrics, 50(2), 255–272.

    Google Scholar 

  • Archambault, É., Vignola-Gagné, É., Côté, G., Larivire, V., & Gingrasb, Y. (2006). Benchmarking scientific output in the social sciences and humanities: The limits of existing databases. Scientometrics, 68(3), 329–342.

    Google Scholar 

  • Ashton, S. V., & Oppenheim, C. (1978). A method of predicting Nobel prizewinners in chemistry. Social Studies of Science, 8(3), 341–348.

    Google Scholar 

  • Asplund, M., & Welle, C. G. (2018). Advancing science: How bias holds us back. Neuron, 99(4), 635–639.

    Google Scholar 

  • Azoulay, P., Stuart, T., & Wang, Y. (2014). Matthew: Effect or fable? Management Science, 60(1), 92–109.

    Google Scholar 

  • Baas, J., Schotten, M., Plume, A., Côté, G., & Karimi, R. (2020). Scopus as a curated, high-quality bibliometric data source for academic research in quantitative science studies. Quantitative Science Studies, 1(1), 377–386.

    Google Scholar 

  • Bakker, M. M., & Jacobs, M. H. (2016). Tenure track policy increases representation of women in senior academic positions, but is insufficient to achieve gender balance. PLoS ONE, 11(9), e0163376.

    Google Scholar 

  • Bedi, G., Van Dam, N. T., & Munafo, M. (2012). Gender inequality in awarded research grants. The Lancet, 380(9840), 474.

    Google Scholar 

  • Bendels, M. H., Dietz, M. C., Brüggmann, D., Oremek, G. M., Schöffel, N., & Groneberg, D. A. (2018a). Gender disparities in high-quality dermatology research: A descriptive bibliometric study on scientific authorships. British Medical Journal Open, 8(4), e020089.

    Google Scholar 

  • Bendels, M. H., Müller, R., Brueggmann, D., & Groneberg, D. A. (2018b). Gender disparities in high-quality research revealed by Nature Index journals. PLoS ONE, 13(1), e0189136.

    Google Scholar 

  • Benschop, Y., & Brouns, M. (2003). Crumbling ivory towers: Academic organizing and its gender effects. Gender, Work & Organization, 10(2), 194–212.

    Google Scholar 

  • Bentley, J. T., & Adamson, R. (2003). Gender Differences in the Careers of Academic Scientists and Engineers: A Literature Review. Special Report.

  • Bhaumik, S., & Jagnoor, J. (2019). Diversity in the editorial boards of global health journals. BMJ Global Health, 4(5), e001909.

    Google Scholar 

  • Blau, F. D., Currie, J. M., Croson, R. T., & Ginther, D. K. (2010). Can mentoring help female assistant professors? Interim results from a randomized trial. American Economic Review, 100(2), 348–352.

    Google Scholar 

  • Blumenthal, D. M., Bergmark, R. W., Raol, N., Bohnen, J. D., Eloy, J. A., & Gray, S. T. (2018). Sex differences in faculty rank among academic surgeons in the United States in 2014. Annals of Surgery, 268(2), 193–200.

    Google Scholar 

  • Bohannon, J. (2011). The science hall of fame. Science, 331(6014), 143–143.

    Google Scholar 

  • Bornmann, L., Mutz, R., & Daniel, H. D. (2007). Gender differences in grant peer review: A meta-analysis. Journal of Informetrics, 1(3), 226–238.

    Google Scholar 

  • Bothner, M. S., Podolny, J. M., & Smith, E. B. (2011). Organizing contests for status: The Matthew effect vs the Mark effect. Management Science, 57(3), 439–457.

    MATH  Google Scholar 

  • Boyle, P. J., Smith, L. K., Cooper, N. J., Williams, K. S., & O'Connor, H. (2015). Gender balance: Women are funded more fairly in social science. Nature, 525(7568), 181–183.

    Google Scholar 

  • Breda, T., Grenet, J., Monnet, M., & Van Effenterre, C. (2020). Do female role models reduce the gender gap in science? Evidence from French high schools (No. 13163). Institute of Labor Economics (IZA).

  • Breit, W., & Hirsch, B. (2004). Lives of the laureates: Eighteen Nobel economists. Cambridge: The MIT.

    Google Scholar 

  • Broderick, N. A., & Casadevall, A. (2019). Meta-Research: Gender inequalities among authors who contributed equally. Elife, 8, e36399.

    Google Scholar 

  • Bucchi, M. (2014). Norms, competition and visibility in contemporary science: The legacy of Robert K Merton. Journal of Classical Sociology, 15, 233–252.

    Google Scholar 

  • Caplar, N., Tacchella, S., & Birrer, S. (2017). Quantitative evaluation of gender bias in astronomical publications from citation counts. Nature Astronomy, 1(6), 0141.

    Google Scholar 

  • Ceci, S. J., & Williams, W. M. (2011). Understanding current causes of women's underrepresentation in science. Proceedings of the National Academy of Sciences, 108(8), 3157–3162.

    Google Scholar 

  • Ceci, S. J., Ginther, D. K., Kahn, S., & Williams, W. M. (2014). Women in academic science: A changing landscape. Psychological Science in the Public Interest, 15(3), 75–141.

    Google Scholar 

  • Ceci, S. J., Williams, W. M., & Barnett, S. M. (2009). Women's underrepresentation in science: Sociocultural and biological considerations. Psychological Bulletin, 135(2), 218.

    Google Scholar 

  • Chan, H. F., & Torgler, B. (2012). Econometric fellows and Nobel laureates in economics (No. 2012–13). CREMA Working Paper.

  • Chan, H. F., & Torgler, B. (2015a). The implications of educational and methodological background for the career success of Nobel laureates: An investigation of major awards. Scientometrics, 102(1), 847–863.

    Google Scholar 

  • Chan, H. F., & Torgler, B. (2015b). Do great minds appear in batches? Scientometrics, 104(2), 475–488.

    Google Scholar 

  • Chan, H. F., Frey, B. S., Gallus, J., & Torgler, B. (2014a). Academic honors and performance. Labour Economics, 31, 188–204.

    Google Scholar 

  • Chan, H. F., Frey, B. S., Gallus, J., Schaffner, M., Torgler, B., & Whyte, S. (2014b). Do the best scholars attract the highest speaking fees? An exploration of internal and external influence. Scientometrics, 101(1), 793–817.

    Google Scholar 

  • Chan, H. F., Frey, B. S., Gallus, J., Schaffner, M., Torgler, B., & Whyte, S. (2016a). External influence as an indicator of scholarly importance. CESifo Economic Studies, 62(1), 170–195.

    Google Scholar 

  • Chan, H. F., Gleeson, L., & Torgler, B. (2014c). Awards before and after the Nobel Prize: A Matthew effect and/or a ticket to one’s own funeral? Research Evaluation, 23(3), 210–220.

    Google Scholar 

  • Chan, H. F., Mixon, F. G., & Torgler, B. (2018). Relation of early career performance and recognition to the probability of winning the Nobel Prize in economics. Scientometrics, 114(3), 1069–1086.

    Google Scholar 

  • Chan, H. F., Mixon, F. G., & Torgler, B. (2019). Fame in the sciences: A culturomics approach. Scientometrics, 118(2), 605–615.

    Google Scholar 

  • Chan, H. F., Önder, A. S., & Torgler, B. (2015). Do Nobel laureates change their patterns of collaboration following prize reception? Scientometrics, 105(3), 2215–2235.

    Google Scholar 

  • Chan, H. F., Önder, A. S., & Torgler, B. (2016b). The first cut is the deepest: Repeated interactions of coauthorship and academic productivity in Nobel laureate teams. Scientometrics, 106(2), 509–524.

    Google Scholar 

  • Cole, S. (1979). Age and scientific performance. American Journal of Sociology, 84(4), 958–977.

    Google Scholar 

  • Conley, D., & Stadmark, J. (2012). Gender matters: A call to commission more women writers. Nature, 488(7413), 590.

    Google Scholar 

  • de Moya-Anegón, F., Chinchilla-Rodríguez, Z., Vargas-Quesada, B., Corera-Álvarez, E., Muñoz-Fernández, F., González-Molina, A., et al. (2007). Coverage analysis of Scopus: A journal metric approach. Scientometrics, 73(1), 53–78.

    Google Scholar 

  • Dehdarirad, T., Villarroya, A., & Barrios, M. (2015). Research on women in science and higher education: A bibliometric analysis. Scientometrics, 103(3), 795–812.

    Google Scholar 

  • DuBois, D. L., Holloway, B. E., Valentine, J. C., & Cooper, H. (2002). Effectiveness of mentoring programs for youth: A meta-analytic review. American Journal of Community Psychology, 30(2), 157–197.

    Google Scholar 

  • Eby, L. T., Allen, T. D., Evans, S. C., Ng, T., & DuBois, D. L. (2008). Does mentoring matter? A multidisciplinary meta-analysis comparing mentored and non-mentored individuals. Journal of Vocational Behavior, 72(2), 254–267.

    Google Scholar 

  • Elsevier. (2017). Gender in the Global Research Landscape. Amsterdam: Elsevier

  • European Commission. (2019). She Figures 2018.

  • European Value Survey. (2015). European Values Study longitudinal data file 1981–2008 (EVS 1981–2008).

  • Fahy, D. (2018). The laureate as celebrity genius: How Scientific American’s John Horgan profiled Nobel Prize winners. Public Understanding of Science, 27, 433–445.

    Google Scholar 

  • Fell, C. B., & König, C. J. (2016). Is there a gender difference in scientific collaboration? A scientometric examination of co-authorships among industrial–organizational psychologists. Scientometrics, 108(1), 113–141.

    Google Scholar 

  • Frandsen, T. F., Jacobsen, R. H., & Ousager, J. (2020). Gender gaps in scientific performance: A longitudinal matching study of health sciences researchers. Scientometrics, 124, 1511–1527.

    Google Scholar 

  • Gay-Antaki, M., & Liverman, D. (2018). Climate for women in climate science: Women scientists and the Intergovernmental Panel on Climate Change. Proceedings of the National Academy of Sciences, 115(9), 2060–2065.

    Google Scholar 

  • Ghiasi, G., Mongeon, P., Sugimoto, C., & Larivière, V. (2018). Gender homophily in citations. In 23rd International Conference on Science and Technology Indicators (STI 2018) (September 2018) (pp. 1519–1525).

  • Goldsmith, B. (2005). Obsessive genius: The inner world of Marie Curie. New York: WW Norton & Company.

    Google Scholar 

  • Goldstone, J. A. (1979). A deductive explanation of the Matthew Effect in science. Social Studies of Science, 9(3), 385–391.

    Google Scholar 

  • Guiso, L., Monte, F., Sapienza, P., & Zingales, L. (2008). Culture, gender, and math. Science, 320(5880), 1164–1165.

    Google Scholar 

  • Hafeez, D. M., Waqas, A., Majeed, S., Naveed, S., Afzal, K. I., Aftab, Z., et al. (2019). Gender distribution in psychiatry journals' editorial boards worldwide. Comprehensive Psychiatry, 94, 152119.

    Google Scholar 

  • Handelsman, J., Cantor, N., Carnes, M., Denton, D., Fine, E., Grosz, B., et al. (2005). More women in science. Science, 309(5738), 1190–1191.

    Google Scholar 

  • Handley, I. M., Brown, E. R., Moss-Racusin, C. A., & Smith, J. L. (2015). Quality of evidence revealing subtle gender biases in science is in the eye of the beholder. Proceedings of the National Academy of Sciences, 112(43), 13201–13206.

    Google Scholar 

  • Hansson, N. (2018). What’s so special about the Nobel Prize? Public Understanding of Science, 27, 485–488.

    Google Scholar 

  • Hechtman, L. A., Moore, N. P., Schulkey, C. E., Miklos, A. C., Calcagno, A. M., Aragon, R., et al. (2018). NIH funding longevity by gender. Proceedings of the National Academy of Sciences, 115(31), 7943–7948.

    Google Scholar 

  • Henriksen, D. (2019). Alphabetic or contributor author order What is the norm in Danish economics and political science and why? Journal of the Association for Information Science and Technology, 70(6), 607–618.

    Google Scholar 

  • Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National academy of Sciences, 102(46), 16569–16572.

    MATH  Google Scholar 

  • Hirsch, J. E. (2007). Does the h index have predictive power? Proceedings of the National Academy of Sciences, 104(49), 19193–19198.

    Google Scholar 

  • Holman, L., Stuart-Fox, D., & Hauser, C. E. (2018). The gender gap in science: How long until women are equally represented? PLoS Biology, 16(4), e2004956.

    Google Scholar 

  • Huang, C. K., Neylon, C., Brookes-Kenworthy, C., Hosking, R., Montgomery, L., Wilson, K., et al. (2020a). Comparison of bibliographic data sources: Implications for the robustness of university rankings. Quantitative Science Studies, 1(2), 445–478.

    Google Scholar 

  • Huang, J., Gates, A. J., Sinatra, R., & Barabási, A. L. (2020b). Historical comparison of gender inequality in scientific careers across countries and disciplines. Proceedings of the National Academy of Sciences, 117(9), 4609–4616.

    Google Scholar 

  • Inglehart, R., Haerpfer, C., Moreno, A., Welzel, C., Kizilova, K., Diez-Medrano, J., et al. (2014). World values survey: all rounds - country-pooled datafile 1981–2014. Madrid: JD Systems Institute.

    Google Scholar 

  • Ioannidis, J. P., Baas, J., Klavans, R., & Boyack, K. W. (2019). A standardized citation metrics author database annotated for scientific field. PLoS Biology, 17(8), e3000384.

    Google Scholar 

  • Ioannidis, J. P., Klavans, R., & Boyack, K. W. (2016). Multiple citation indicators and their composite across scientific disciplines. PLoS Biology, 14(7), e1002501.

    Google Scholar 

  • Ioannidou, E., & Rosania, A. (2015). Under-representation of women on dental journal editorial boards. PLoS ONE, 10(1), e0116630.

    Google Scholar 

  • Jena, A. B., Khullar, D., Ho, O., Olenski, A. R., & Blumenthal, D. M. (2015). Sex differences in academic rank in US medical schools in 2014. JAMA, 314(11), 1149–1158.

    Google Scholar 

  • King, M. M., Bergstrom, C. T., Correll, S. J., Jacquet, J., & West, J. D. (2017). Men set their own cites high: Gender and self-citation across fields and over time. Socius, 3, 1–22.

    Google Scholar 

  • Kloot, L. (2004). Women and leadership in universities: A case study of women academic managers. International Journal of Public Sector Management, 17(6), 470–485.

    Google Scholar 

  • Larivière, V., Ni, C., Gingras, Y., Cronin, B., & Sugimoto, C. R. (2013). Global gender disparities in science. Nature, 504(7479), 211–213.

    Google Scholar 

  • Lerback, J., & Hanson, B. (2017). Journals invite too few women to referee. Nature, 541(7638), 455–457.

    Google Scholar 

  • Lincoln, A. E., Pincus, S., Koster, J. B., & Leboy, P. S. (2000s). The Matilda effect in science: Awards and prizes in the US, 1990s and 2000s. Social Studies of Science, 42(2), 307–320.

    Google Scholar 

  • Liu, J., Song, Y., & Yang, S. (2020). Gender disparities in the field of economics. Scientometrics. https://doi.org/10.1007/s11192-020-03627-x.

    Article  Google Scholar 

  • Lockwood, P. (2006). “Someone like me can be successful”: Do college students need same-gender role models? Psychology of Women Quarterly, 30(1), 36–46.

    Google Scholar 

  • Lotka, A. J. (1926). The frequency distribution of scientific productivity. Journal of the Washington Academy of Sciences, 16(12), 317–323.

    Google Scholar 

  • Lunnemann, P., Jensen, M. H., & Jauffred, L. (2019). Gender bias in Nobel prizes. Palgrave Communications, 5(1), 46.

    Google Scholar 

  • Marsh, H. W., Bornmann, L., Mutz, R., Daniel, H. D., & O’Mara, A. (2009). Gender effects in the peer reviews of grant proposals: A comprehensive meta-analysis comparing traditional and multilevel approaches. Review of Educational Research, 79(3), 1290–1326.

    Google Scholar 

  • Martín-Martín, A., Orduna-Malea, E., & López-Cózar, E. D. (2018a). Coverage of highly-cited documents in Google Scholar, Web of Science, and Scopus: A multidisciplinary comparison. Scientometrics, 116(3), 2175–2188.

    Google Scholar 

  • Martín-Martín, A., Orduna-Malea, E., Thelwall, M., & López-Cózar, E. D. (2018b). Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics, 12(4), 1160–1177.

    Google Scholar 

  • Mayer, S. J., & Rathmann, J. M. (2018). How does research productivity relate to gender? Analyzing gender differences for multiple publication dimensions. Scientometrics, 117(3), 1663–1693.

    Google Scholar 

  • Mazloumian, A., Eom, Y. H., Helbing, D., Lozano, S., & Fortunato, S. (2011). How citation boosts promote scientific paradigm shifts and Nobel prizes. PLoS ONE, 6(5), e18975.

    Google Scholar 

  • Medoff, M. H. (2006). Evidence of a Harvard and Chicago Matthew effect. Journal of Economic Methodology, 13(4), 485–506.

    Google Scholar 

  • Merton, R. K. (1968). The Matthew effect in science: The reward and communication systems of science are considered. Science, 159(3810), 56–63.

    Google Scholar 

  • Merton, R. K. (1973). The sociology of science: Theoretical and empirical investigations. Chicago: University of Chicago Press.

    Google Scholar 

  • Miller, D. I., Eagly, A. H., & Linn, M. C. (2015). Women’s representation in science predicts national gender-science stereotypes: Evidence from 66 nations. Journal of Educational Psychology, 107(3), 631.

    Google Scholar 

  • Mixon, F. G., Torgler, B., & Upadhyaya, K. P. (2017). Scholarly impact and the timing of major awards in economics. Scientometrics, 112(3), 1837–1852.

    Google Scholar 

  • Mongeon, P., & Paul-Hus, A. (2016). The journal coverage of Web of Science and Scopus: A comparative analysis. Scientometrics, 106(1), 213–228.

    Google Scholar 

  • Morgan, S. L., Gelbgiser, D., & Weeden, K. A. (2013). Feeding the pipeline: Gender, occupational plans, and college major selection. Social Science Research, 42(4), 989–1005.

    Google Scholar 

  • Moss-Racusin, C. A., Dovidio, J. F., Brescoll, V. L., Graham, M. J., & Handelsman, J. (2012). Science faculty’s subtle gender biases favor male students. Proceedings of the National Academy of Sciences, 109(41), 16474–16479.

    Google Scholar 

  • Nature Cell Biology. (2018). Celebrating women in science. Nature Cell Biology, 20, 993.

    Google Scholar 

  • Editorial, N. (2013). Science for all. Nature, 495, 5.

    Google Scholar 

  • Niemeier, D. A., & González, C. (2004). Breaking into the guildmasters' club: What we know about women science and engineering department chairs at AAU universities. NWSA Journal, 16, 157–171.

    Google Scholar 

  • Nittrouer, C. L., Hebl, M. R., Ashburn-Nardo, L., Trump-Steele, R. C., Lane, D. M., & Valian, V. (2018). Gender disparities in colloquium speakers at top universities. Proceedings of the National Academy of Sciences, 115(1), 104–108.

    Google Scholar 

  • Ong, D., Chan, H. F., Torgler, B., & Yang, Y. A. (2018). Collaboration incentives: Endogenous selection into single and coauthorships by surname initial in economics and management. Journal of Economic Behavior & Organization, 147, 41–57.

    Google Scholar 

  • Organisation for Economic Co-operation and Development. (2015). Directorate for Science, Technology, and Industry. OECD Science, Technology and Industry Scoreboard 2015: Innovation for Growth and Society.

  • Organisation for Economic Co-operation and Development. (2015). Frascati Manual 2015: Guidelines for collecting and reporting data on research and experimental development.

  • Osborn, M. (1994). Status and prospects of women in science in Europe. Science, 263(5152), 1389–1391.

    Google Scholar 

  • Over, R. (1982). Research productivity and impact of male and female psychologists. American Psychologist, 37(1), 24.

    Google Scholar 

  • Peñas, C. S., & Willett, P. (2006). Brief communication: Gender differences in publication and citation counts in librarianship and information science research. Journal of Information Science, 32(5), 480–485.

    Google Scholar 

  • Potthoff, M., & Zimmermann, F. (2017). Is there a gender-based fragmentation of communication science? An investigation of the reasons for the apparent gender homophily in citations. Scientometrics, 112(2), 1047–1063.

    Google Scholar 

  • Qamar, S. R., Khurshid, K., Jalal, S., McInnes, M. D., Probyn, L., Finlay, K., et al. (2020). Gender disparity among leaders of Canadian academic radiology departments. American Journal of Roentgenology, 214(1), 3–9.

    Google Scholar 

  • Radicchi, F., Fortunato, S., & Castellano, C. (2008). Universality of citation distributions: Toward an objective measure of scientific impact. Proceedings of the National Academy of Sciences, 105(45), 17268–17272.

    Google Scholar 

  • Redner, S. (1998). How popular is your paper? An empirical study of the citation distribution. European Physical Journal B, 4(2), 131–134.

    Google Scholar 

  • Rees, T. (2002). National policies on women and science in Europe. European Commission, Directorate-General for Research, Women and Science.

  • Reuben, E., Sapienza, P., & Zingales, L. (2014). How stereotypes impair women’s careers in science. Proceedings of the National Academy of Sciences, 111(12), 4403–4408.

    Google Scholar 

  • Rossiter, M. W. (1993). The Matthew Matilda effect in science. Social Studies of Science, 23(2), 325–341.

    Google Scholar 

  • Samuelson, P. A. (2004). In W. Breit & B. T. Hirsch (Eds.), Lives of the laureates: Eighteen Nobel economists, pp. 49–65. Cambridge: The MIT Press.

  • Santos, G., & Dang Van Phu, S. (2019). Gender and Academic Rank in the UK. Sustainability, 11(11), 3171.

    Google Scholar 

  • Schlagberger, E. M., Bornmann, L., & Bauer, J. (2016). At what institutions did Nobel laureates do their prize-winning work? An analysis of biographical information on Nobel laureates from 1994 to 2014. Scientometrics, 109(2), 723–767.

    Google Scholar 

  • Schreiber, M. (2008). A modification of the h-index: The hm-index accounts for multi-authored manuscripts. Journal of Informetrics, 2(3), 211–216.

    Google Scholar 

  • Science-Metric Inc. (2018). Analytical support for bibliometrics indicators: development of bibliometric indicators to measure women’s contribution to scientific publications. Montreal: Science-Metric Inc.

    Google Scholar 

  • Seglen, P. O. (1992). The skewness of science. Journal of the American Society for Information Science, 43(9), 628–638.

    Google Scholar 

  • Sheltzer, J. M., & Smith, J. C. (2014). Elite male faculty in the life sciences employ fewer women. Proceedings of the National Academy of Sciences, 111(28), 10107–10112.

    Google Scholar 

  • Shen, H. (2013). Mind the gender gap. Nature, 495(7439), 22.

    Google Scholar 

  • Simon, H. A. (1955). On a class of skew distribution functions. Biometrika, 42(3/4), 425–440.

    MathSciNet  MATH  Google Scholar 

  • Simonton, D. K. (1988). Scientific genius: A psychology of science. Cambridge: Cambridge University Press.

    Google Scholar 

  • Simonton, D. K. (2013). Creative genius in science. Berlin: Springer.

    Google Scholar 

  • Skibba, R. (2019). Women in physics. Nature Reviews Physics, 1, 298–3000.

    Google Scholar 

  • Strømgren C. (2016). Genderize.io. https://genderize.io.

  • Thelwall, M. (2020a). Mid-career field switches reduce gender disparities in academic publishing. Scientometrics, 123(3), 1365–1383.

    Google Scholar 

  • Thelwall, M. (2020b). Gender differences in citation impact for 27 fields and six English-speaking countries 1996–2014. Quantitative Science Studies, 1(2), 1–19.

    Google Scholar 

  • Thelwall, M. (2020c). Female citation impact superiority 1996–2018 in six out of seven English-speaking nations. Journal of the Association for Information Science and Technology, 71(8), 979–990.

  • Thomas, E. G., Jayabalasingham, B., Collins, T., Geertzen, J., Bui, C., & Dominici, F. (2019). Gender disparities in invited commentary authorship in 2459 medical journals. JAMA Network Open, 2(10), e1913682–e1913682.

    Google Scholar 

  • Topaz, C. M., & Sen, S. (2016). Gender representation on journal editorial boards in the mathematical sciences. PLoS ONE, 11(8), e0161357.

    Google Scholar 

  • Torgler, B., & Piatti, M. (2013). A century of American Economic Review: Insights on critical factors in journal publishing. Berlin: Springer.

    Google Scholar 

  • Treviño, L. J., Gomez-Mejia, L. R., Balkin, D. B., & Mixon, F. G., Jr. (2018). Meritocracies or masculinities? The differential allocation of named professorships by gender in the academy. Journal of Management, 44(3), 972–1000.

    Google Scholar 

  • United Nations Development Programme. (2018). Human development indices and indicators: 2018 statistical update.

  • van Arensbergen, P., van der Weijden, I., & van den Besselaar, P. (2012). Gender differences in scientific productivity: a persisting phenomenon? Scientometrics, 93(3), 857–868.

    Google Scholar 

  • van Den Besselaar, P., & Sandström, U. (2016). Gender differences in research performance and its impact on careers: a longitudinal case study. Scientometrics, 106(1), 143–162.

    Google Scholar 

  • van den Besselaar, P., & Sandström, U. (2017). Vicious circles of gender bias, lower positions, and lower performance: Gender differences in scholarly productivity and impact. PLoS ONE, 12(8), e0183301.

    Google Scholar 

  • Van den Brink, M. (2010). Behind the scenes of science: Gender practices in the recruitment and selection of professors in the Netherlands. Amsterdam: Amsterdam University Press.

    Google Scholar 

  • Vera-Baceta, M. A., Thelwall, M., & Kousha, K. (2019). Web of Science and Scopus language coverage. Scientometrics, 121(3), 1803–1813.

    Google Scholar 

  • West, J. D., Jacquet, J., King, M. M., Correll, S. J., & Bergstrom, C. T. (2013). The role of gender in scholarly authorship. PLoS ONE, 8(7), e66212.

    Google Scholar 

  • Widmalm, S. (2018). The Nobel science prizes and their constituencies. Public Understanding of Science, 27(4), 397–404.

    Google Scholar 

  • Williams, W. M., & Ceci, S. J. (2015). National hiring experiments reveal 2: 1 faculty preference for women on STEM tenure track. Proceedings of the National Academy of Sciences, 112(17), 5360–5365.

    Google Scholar 

  • Witteman, H. O., Hendricks, M., Straus, S., & Tannenbaum, C. (2019). Are gender gaps due to evaluations of the applicant or the science? A natural experiment at a national funding agency. The Lancet, 393(10171), 531–540.

    Google Scholar 

  • World Economic Forum. (2018). The global gender gap report. Genebra: World Economic Forum.

    Google Scholar 

  • Xie, Y., Shauman, K. A., & Shauman, K. A. (2003). Women in science: Career processes and outcomes. Cambridge: Harvard University Press.

    Google Scholar 

  • Yang, H. Y., Rhee, G., Xuan, L., Silver, J. K., Jalal, S., & Khosa, F. (2019). Analysis of H-index in assessing gender differences in academic rank and leadership in physical medicine and rehabilitation in the United States and Canada. American Journal of Physical Medicine & Rehabilitation, 98(6), 479–483.

    Google Scholar 

  • Zakaib, G. D. (2011). Science gap probed. Nature, 470(7333), 153–153.

    Google Scholar 

  • Zuckerman, H. (1992). The proliferation of prizes: Nobel complements and Nobel surrogates in the reward system of science. Theoretical Medicine, 13(2), 217–231.

    Google Scholar 

  • Zuckerman, H. (1996). Proliferation of scientific prizes reinforces Nobel's distinguished honor. Scientist, 10(22), 10–10.

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Australian Research Council (ARC), DP180101169. We would like to thank the reviewers for their thoughtful suggestions towards improving our manuscript. Tong Li, Weilong Bi, and Nikita Ferguson provided excellent research assistant.

Author information

Authors and Affiliations

Authors

Contributions

HFC and BT contributed to the conception, design, and analysis of the study, as well as writing of the manuscript.

Corresponding authors

Correspondence to Ho Fai Chan or Benno Torgler.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9636 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, H.F., Torgler, B. Gender differences in performance of top cited scientists by field and country. Scientometrics 125, 2421–2447 (2020). https://doi.org/10.1007/s11192-020-03733-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-020-03733-w

Keywords

Navigation