Skip to main content
Log in

Mapping extended technological trajectories: integration of main path, derivative paths, and technology junctures

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Technological trajectory is an attractive concept, but is hard to be operationalized. Challenging this issue, we suggest an extended technological trajectory method. It identifies not only the single main path, but derivative paths emanating from technology junctures on the main path. Convergence and divergence of technologies occur on junctures that are identified by using three indicators of technology generality, path-specific generality and path-specific novelty. Dynamic technology tree allows researchers to identify product component—patent linkages in a structured way, deepening our understanding about effects of technological developments on a product. In practice, our approach can help researchers better identify technologically related opportunities, thereby triggering the process from well-focused technology portfolio to technological advantages. High voltage direct current transmission technology is exemplified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allebrod, S., Hamerski, R., & Marquardt, R. (2008). New transformerless, scalable modular multilevel converters for HVDC-transmission. In Power Electronics Specialists Conference, 2008 (pp. 174–179). IEEE.

  • Bahrman, M. P., & Johnson, B. K. (2007). The ABCs of HVDC transmission technologies. IEEE Power and Energy Magazine, 5, 32–44.

    Article  Google Scholar 

  • Barberá-Tomás, D., Jiménez-Sáez, F., & Castelló-Molina, I. (2011). Mapping the importance of the real world: The validity of connectivity analysis of patent citations networks. Research Policy, 40(3), 473–486.

    Article  Google Scholar 

  • Batagelj, V., & Mrvar, A. (2004). Pajek—Analysis and visualization of large networks. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Calero-Medina, C., & Noyons, E. C. (2008). Combining mapping and citation network analysis for a better understanding of the scientific development: The case of the absorptive capacity field. Journal of Informetrics, 2(4), 272–279.

    Article  Google Scholar 

  • Callon, M., Courtial, J. P., Turner, W. A., & Bauin, S. (1983). From translations to problematic networks: An introduction to co-word analysis. Information, 22(2), 191–235.

    Google Scholar 

  • Castaldi, C., Fontana, R., & Nuvolari, A. (2009). Chariots of fire: The evolution of tank technology. 1915–1945. Journal of Evolutionary Economics., 19(4), 545–566.

    Article  Google Scholar 

  • Chen, S., Huang, M., & Chen, D. (2012). Identifying and visualizing technology evolution: A case study of smart grid technology. Technological Forecasting and Social Change, 79(6), 1099–1110.

    Article  Google Scholar 

  • Chen, D., Huang, M., Hsieh, H., & Lin, C. (2011). Identifying missing relevant patent citation links by using bibliographic coupling in LED illuminating technology. Journal of Informetrics, 5(3), 400–412.

    Article  Google Scholar 

  • Chen, C., Paul, R. J., & O’Keefe, B. (2001). Fitting the jigsaw of citation: Information visualization in domain analysis. Journal of the Association for Information Science and Technology., 52(4), 315–330.

    Google Scholar 

  • Choe, H., Lee, D. H., Seo, I. W., & Kim, H. D. (2013). Patent citation network analysis for the domain of organic photovoltaic cells: Country, institution, and technology field. Renewable and Sustainable Energy Review, 26, 492–505.

    Article  Google Scholar 

  • Choi, S., Park, H., Kang, D., Lee, J. Y., & Kim, K. (2012). An SAO-based text mining approach to building a technology tree for technology planning. Expert Systems with Applications, 39(13), 11443–11455.

    Article  Google Scholar 

  • Chuang, T. C., Liu, J. S., Lu, L. Y., & Lee, Y. (2014). The main paths of medical tourism: From transplantation to beautification. Tourism Management, 45, 49–58.

    Article  Google Scholar 

  • Davidson, C. C., & Trainer, D. R. (2010). Innovative concepts for hybrid multi-level converters for HVDC power transmission. In ACDC 9th IET International Conference on AC and DC Power Transmission, 2010 (pp. 1–5). IET.

  • Dosi, G. (1982). Technological paradigms and technological trajectories: A suggested interpretation of the determinants and directions of technical change. Research Policy, 11(3), 147–162.

    Article  Google Scholar 

  • Durand, T. (1992). Dual technological trees: Assessing the intensity and strategic significance of technological change. Research Policy, 21(4), 361–380.

    Article  Google Scholar 

  • Fontana, R., Nuvolari, A., & Verspagen, B. (2009). Mapping technological trajectories as patent citation networks. An application to data communication standards. Economics of Innovation and New Technology, 18(4), 311–336.

    Article  Google Scholar 

  • Frenken, K., & Leydesdorff, L. (2000). Scaling trajectories in civil aircraft (1913–1997). Research Policy, 29(3), 331–348.

    Article  Google Scholar 

  • Frenken, K., & Nuvolari, A. (2004). The early development of the steam engine: An evolutionary interpretation using complexity theory. Industrial and Corporate Change, 13(2), 419–450.

    Article  Google Scholar 

  • Frenken, K., Saviotti, P. P., & Trommetter, V. (1999). Variety and niche creation in aircraft, helicopters, motorcycles and microcomputers. Resesarch Policy, 28(5), 469–488.

    Article  Google Scholar 

  • Furukawa, T., Mori, K., Arino, K., Hayashi, K., & Shirakawa, N. (2015). Identifying the evolutionary process of emerging technologies: A chronological network analysis of World Wide Web conference sessions. Technological Forecasting and Social Change, 91, 280–294.

    Article  Google Scholar 

  • Garfield, E., Sher, I. H., & Torpie, R. J. (1964). The use of citation data in writing the history of science. Philadelphia: Institute for Scientific Information INC.

    Book  Google Scholar 

  • Griliches, Z. (1990). Patent statistics as economic indicators: A survey. National Bureau Of Economic Research. No. w3301. https://doi.org/10.3386/w3301.

  • Hall, B. H., & Trajtenberg, M. (2004). Uncovering GPTs with patent data. National Bureau Of Economic Research. No. w10901. https://doi.org/10.3386/w10901.

  • Harris, J. K., Luke, D. A., Zuckerman, R. B., & Shelton, S. C. (2009). Forty years of secondhand smoke research: The gap between discovery and delivery. American Journal of Preventive Medicine, 36(6), 538–548.

    Article  Google Scholar 

  • Heiss, M., & Jankowsky, J. (2001). The technology tree concept-an evolutionary approach to technology management in a rapidly changing market. In IEMC 2001 Proceedings of Change Management and the New Industrial Revolution, 2001 (pp. 37–43). IEMC.

  • Ho, J. C., Saw, E., Lu, L. Y. Y., & Liu, J. S. (2014). Technological barriers and research trends in fuel cell technologies: A citation network analysis. Technological Forecasting and Social Change, 82, 66–79.

    Article  Google Scholar 

  • Huang, M. H., Chen, S. H., Lin, C. Y., & Chen, D. Z. (2014). Exploring temporal relationships between scientific and technical fronts: A case of biotechnology field. Scientometrics, 98(2), 1085–1100.

    Article  Google Scholar 

  • Huang, Z., Chen, H., Yip, A., Ng, G., Guo, F., Chen, Z. K., et al. (2003). Longitudinal patent analysis for nanoscale science and engineering: Country, institution and technology field. Journal of Nanoparticle Research, 5(3–4), 333–363.

    Article  Google Scholar 

  • Hummon, N. P., & Carley, K. (1993). Social networks as normal science. Social Networks, 15(1), 71–106.

    Article  Google Scholar 

  • Hummon, N. P., & Doreian, P. (1989). Connectivity in a citation network: The development of DNA theory. Social Network, 11(1), 39–63.

    Article  Google Scholar 

  • Hummon, N. P., Doreian, P., & Freeman, L. C. (1990). Analyzing the structure of the centrality–productivity literature created between 1948 and 1979. Science Communication, 11(4), 459–480.

    Google Scholar 

  • Hung, S. C., Liu, J. S., Lu, L. Y., & Tseng, Y. (2014). Technological change in lithium iron phosphate battery: The key-route main path analysis. Scientometrics, 100(1), 97–120.

    Article  Google Scholar 

  • Jaffe, A. B., & Trajtenberg, M. (2002). Patents, citations, and innovations: A window on the knowledge economy. Cambridge: MIT press.

    Google Scholar 

  • Kirkels, A. F. (2014). Punctuated continuity: The technological trajectory of advanced biomass gasifiers. Energy Policy, 68, 170–182.

    Article  Google Scholar 

  • Kropsu-Vehkapera, H., Haapasalo, H., & Rusanen, J. P. (2009). Analysis of technology management functions in Finnish high tech companies. The Open Management Journal, 2, 1–10.

    Article  Google Scholar 

  • Kuhn, T. S. (1962). The structure of scientific revolutions. Chicago: Chicago University Press.

    Google Scholar 

  • Lacasa, I., Grupp, H., & Schmoch, U. (2003). Tracing technological change over long periods in Germany in chemicals using patent statistics. Scientometrics, 57(2), 175–195.

    Article  Google Scholar 

  • Lee, P., Su, H., & Wu, F. (2010). Quantitative mapping of patented technology—The case of electrical conducting polymer nanocomposite. Technological Forecasting and Social Change, 77(3), 466–478.

    Article  Google Scholar 

  • Li, X., Chen, H., Huang, Z., & Roco, M. C. (2007). Patent citation network in nanotechnology (1976–2004). Journal of Nanoparticle Research, 9(3), 337–352.

    Article  Google Scholar 

  • Lin, Y., Chen, J., & Chen, Y. (2011). Backbone of technology evolution in the modern era automobile industry: An analysis by the patents citation network. Journal of Systems Science and Systems Engineering, 20(4), 416–442.

    Article  Google Scholar 

  • Liu, J. S., & Lu, L. Y. (2012). An integrated approach for main path analysis: Development of the hirsch index as an example. Journal of the American Society for Information Science and Technology, 63(3), 528–542.

    Article  MathSciNet  Google Scholar 

  • Lucio-Arias, D., & Leydesdorff, L. (2008). Main-path analysis and path-dependent transitions in HistCite™-based historiograms. Journal of the American Society for Information Science and Technology, 59(12), 1948–1962.

    Article  Google Scholar 

  • Martinelli, A. (2012). An emerging paradigm or just another trajectory? Understanding the nature of technological changes using engineering heuristics in the telecommunications switching industry. Research Policy, 41(2), 414–429.

    Article  Google Scholar 

  • Mina, A., Ramlogan, R., Tampubolon, G., & Metcalfe, J. S. (2007). Mapping evolutionary trajectories: Applications to the growth and transformation of medical knowledge. Research Policy, 36(5), 789–806.

    Article  Google Scholar 

  • Mokyr, J. (2002). The gifts of athena: Historical origins of the knowledge economy. Princeton: Princeton University Press.

    Google Scholar 

  • Moore, S., Haines, V., Hawe, P., & Shiell, A. (2006). Lost in translation: A genealogy of the “social capital” concept in public health. Journal of Epidemiology and Community Health, 60(8), 729–734.

    Article  Google Scholar 

  • Morris, S., Yen, G., Wu, Z., & Asnake, B. (2003). Time line visualization of research fronts. Journal of the Association for Information Science and Technology, 54(5), 413–422.

    Google Scholar 

  • Nelson, R. R., & Winter, S. G. (1977). In search of useful theory of innovation. Research Policy, 6(1), 36–76.

    Article  Google Scholar 

  • Newman, M. E. J., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69(2), 026113.

    Article  Google Scholar 

  • Parayil, G. (2003). Mapping technological trajectories of the Green revolution and the Gene revolution from modernization to globalization. Research Policy, 32(6), 971–990.

    Article  Google Scholar 

  • Possas, M. L., Salles-Filho, S., & da Silveira, J. (1996). An evolutionary approach to technological innovation in agriculture: Some preliminary remarks. Research Policy, 25(6), 933–945.

    Article  Google Scholar 

  • Robinson, D. K., Huang, L., Guo, Y., & Porter, A. L. (2013). Forecasting innovation pathways for new and emerging science and technologies. Technological Forecasting and Social Change, 80(2), 267–285.

    Article  Google Scholar 

  • Saviotti, P. P., & Metcalfe, J. S. (1984). A theoretical approach to the construction of technological output indicators. Research Policy, 13(3), 141–151.

    Article  Google Scholar 

  • Schaller, R. R. (1997). Moore’s law: Past, present and future. IEEE Spectrum, 34(6), 52–59.

    Article  Google Scholar 

  • Small, H. (2006). Tracking and predicting growth areas in science. Scientometrics, 68(3), 595–610.

    Article  Google Scholar 

  • Small, H., & Griffith, B. (1974). The structure of scientific literatures: Identifying and graphing specialties. Science Studies, 4(1), 17–40.

    Article  Google Scholar 

  • Small, H., & Upham, P. (2009). Citation structure of an emerging research area on the verge of application. Scientometrics, 79(2), 365–375.

    Article  Google Scholar 

  • Verspagen, B. (2007). Mapping technological trajectories as patent citation networks: A study on the history of fuel cell research. Advances in Complex Systems, 10(1), 93–115.

    Article  MATH  Google Scholar 

  • Vincenti, W. G. (1994). The retractable airplane landing gear and the Northrop “anomaly”: Variation–Selection and the shaping of technology. Technology and Culture, 35(1), 1–33.

    Article  Google Scholar 

  • Von Wartburg, I., Teichert, T., & Rost, K. (2005). Inventive progress measured by multi-stage patent citation analysis. Research Policy, 34(10), 1591–1607.

    Article  Google Scholar 

  • Watanabe, C., Tsuji, Y. S., & Griffy-Brown, C. (2001). Patent statistics: Deciphering a ‘real’ versus a ‘pseudo’ proxy of innovation. Technovation, 21(12), 783–790.

    Article  Google Scholar 

  • White, H. D., & Griffith, B. C. (1981). Author cocitation: A literature measure of intellectual structure. Journal of the Association for Information Science and Technology, 32(3), 163–171.

    Google Scholar 

  • Xiao, Y., Lu, L. Y., Liu, J. S., & Zhou, Z. (2014). Knowledge diffusion path analysis of data quality literature: A main path analysis. Journal of Informetrics, 8(3), 594–605.

    Article  Google Scholar 

  • Yuan, F., & Miyazaki, (2014). Understanding the dynamic nature of technological change using trajectory identification based on patent citation network in the electric vehicles industry. Proceedings of PICMET, 2014, 2780–2790.

    Google Scholar 

  • Zhou, X., Zhang, Y., Porter, A. L., Guo, Y., & Zhu, D. (2014). A patent analysis method to trace technology evolutionary pathways. Scientometrics, 100(3), 705–721.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juneseuk Shin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Shin, J. Mapping extended technological trajectories: integration of main path, derivative paths, and technology junctures. Scientometrics 116, 1439–1459 (2018). https://doi.org/10.1007/s11192-018-2834-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-018-2834-3

Keywords

Mathematics Subject Classification

JEL Classification

Navigation