Skip to main content
Log in

Research trend of metal–organic frameworks: a bibliometric analysis

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

A bibliometric analysis based on the related articles in the Science Citation Index Expanded database was conducted to gain insight into global trends and hot issues of metal–organic frameworks (MOFs). The word clusters of synthesis methods, MOFs’ properties and potential applications and some representative MOFs with related supporting words in title, author keywords, abstract, along with KeyWords Plus were proposed to provide the clues to discover the current research emphases. Y index was introduced to assess the publication characteristics related to the number of first author and corresponding author highly cited articles. Top eight classic articles with total citations since publication to the end of 2014 more than 1000 times (TC2014 > 1000) and top eight classic articles with citations in 2014 more than 165 times (C 2014 > 165) were selected and assessed regarding distribution of outputs in journals, publications of authors, institutions, as well as their citation life cycles. Solvothermal (including hydrothermal) method and diffusion (slow evaporation) were used mostly to prepare MOFs. Series representative MOFs, as well as the corresponding composites or film (membrane) arose the wide interests from researchers due to their excellent performances. Among the various properties and potential applications of MOFs, adsorption (gas adsorption and liquid adsorption) took the lead, followed by catalysis (including photocatalysis), as a result of their ultrahigh porosity and even their catalytic property. The results of Y index analysis revealed that most highly cited articles in MOFs field were contributed by Yaghi, O.M. as corresponding author, who published 27 articles with TC2014 (number of citations since its publication to the end of 2014) ≥100. Omar M. Yaghi, as corresponding author (reprint author), contributed most classic articles, which dealt with synthesis strategy of MOFs with high porosity and high capacity of gas storage. The remaining classic ones concerned to catalysis and drug delivery. These classic articles were published in four high impact journals. The analyses on citation life cycles of the classic articles with highest TC2014 and C 2014 can help the researchers in MOFs related fields gain insight into their impact histories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • Abid, H. R., Tian, H., Ang, H.-M., Tade, M. O., Buckley, C. E., & Wang, S. (2012). Nanosize Zr-metal organic framework (UiO-66) for hydrogen and carbon dioxide storage. Chemical Engineering Journal, 187, 415–420.

    Article  Google Scholar 

  • Ahmed, I., & Jhung, S. H. (2014). Composites of metal–organic frameworks: Preparation and application in adsorption. Materials Today, 17(3), 136–146. doi:10.1016/j.mattod.2014.03.002.

    Article  Google Scholar 

  • Ai, L., Li, L., Zhang, C., Fu, J., & Jiang, J. (2013). MIL-53 (Fe): A metal–organic framework with intrinsic peroxidase-like catalytic activity for colorimetric biosensing. Chemistry-A European Journal, 19(45), 15105–15108.

    Article  Google Scholar 

  • Ai, L., Zhang, C., Li, L., & Jiang, J. (2014). Iron terephthalate metal–organic framework: Revealing the effective activation of hydrogen peroxide for the degradation of organic dye under visible light irradiation. Applied Catalysis, B: Environmental, 148, 191–200.

    Article  Google Scholar 

  • Allendorf, M., Bauer, C., Bhakta, R., & Houk, R. (2009). Luminescent metal–organic frameworks. Chemical Society Reviews, 38(5), 1330–1352.

    Article  Google Scholar 

  • Alvaro, M., Carbonell, E., Ferrer, B., Llabrés i Xamena, F. X., & Garcia, H. (2007). Semiconductor Behavior of a metal–organic framework (MOF). Chemistry-A European Journal, 13(18), 5106–5112.

    Article  Google Scholar 

  • Amali, A. J., Sun, J.-K., & Xu, Q. (2014). From assembled metal–organic framework nanoparticles to hierarchically porous carbon for electrochemical energy storage. Chemical Communications, 50(13), 1519–1522.

    Article  Google Scholar 

  • Autier, P., & Gandini, S. (2007). Vitamin D supplementation and total mortality: A meta-analysis of randomized controlled trials. Archives of Internal Medicine, 167(16), 1730–1737.

    Article  Google Scholar 

  • Aversa, E. (1985). Citation patterns of highly cited papers and their relationship to literature aging: A study of the working literature. Scientometrics, 7(3–6), 383–389.

    Article  Google Scholar 

  • Avramescu, A. (1979). Actuality and obsolescence of scientific literature. Journal of the American Society for Information Science, 30(5), 296–303. doi:10.1002/asi.4630300509.

    Article  Google Scholar 

  • Bárcia, P. S., Guimarães, D., Mendes, P. A., Silva, J. A., Guillerm, V., Chevreau, H., et al. (2011). Reverse shape selectivity in the adsorption of hexane and xylene isomers in MOF UiO-66. Microporous and Mesoporous Materials, 139(1), 67–73.

    Article  Google Scholar 

  • Barea, E., Montoro, C., & Navarro, J. A. (2014). Toxic gas removal—metal–organic frameworks for the capture and degradation of toxic gases and vapours. Chemical Society Reviews, 43(16), 5419–5430.

    Article  Google Scholar 

  • Batten, S. R., Champness, N. R., Chen, X.-M., Garcia-Martinez, J., Kitagawa, S., Öhrström, L., et al. (2013). Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013). Pure and Applied Chemistry, 85(8), 1715–1724.

    Article  Google Scholar 

  • Batten, S. R., Champness, N. R., Chen, X.-M., Garcia-Martinez, J., Kitagawa, S., Öhrström, L., et al. (2012). Coordination polymers, metal–organic frameworks and the need for terminology guidelines. CrystEngComm, 14(9), 3001–3004.

    Article  Google Scholar 

  • Bétard, A., & Fischer, R. A. (2011). Metal–organic framework thin films: From fundamentals to applications. Chemical Reviews, 112(2), 1055–1083.

    Article  Google Scholar 

  • Bordiga, S., Regli, L., Bonino, F., Groppo, E., Lamberti, C., Xiao, B., et al. (2007). Adsorption properties of HKUST-1 toward hydrogen and other small molecules monitored by IR. Physical Chemistry Chemical Physics, 9(21), 2676–2685.

    Article  Google Scholar 

  • Bourrelly, S., Moulin, B., Rivera, A., Maurin, G., Devautour-Vinot, S., Serre, C., et al. (2010). Explanation of the adsorption of polar vapors in the highly flexible metal organic framework MIL-53 (Cr). Journal of the American Chemical Society, 132(27), 9488–9498.

    Article  Google Scholar 

  • Burman, K. D. (1982). Hanging from the masthead: Reflections on authorship. Annals of Internal Medicine, 97(4), 602–605.

    Article  Google Scholar 

  • Cacho-Bailo, F., Seoane, B., Téllez, C., & Coronas, J. (2014). ZIF-8 continuous membrane on porous polysulfone for hydrogen separation. Journal of Membrane Science, 464, 119–126.

    Article  Google Scholar 

  • Caro, J. (2011). Are MOF membranes better in gas separation than those made of zeolites? Current Opinion in Chemical Engineering, 1(1), 77–83.

    Article  Google Scholar 

  • Cavka, J. H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S., & Lillerud, K. P. (2008). A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. Journal of the American Chemical Society, 130(42), 13850–13851.

    Article  Google Scholar 

  • Chae, H. K., Siberio-Pérez, D. Y., Kim, J., Go, Y., Eddaoudi, M., Matzger, A. J., et al. (2004). A route to high surface area, porosity and inclusion of large molecules in crystals. Nature, 427(6974), 523–527.

    Article  Google Scholar 

  • Chang, N., & Yan, X.-P. (2012). Exploring reverse shape selectivity and molecular sieving effect of metal–organic framework UIO-66 coated capillary column for gas chromatographic separation. Journal of Chromatography A, 1257, 116–124.

    Article  Google Scholar 

  • Chavan, S., Vitillo, J. G., Gianolio, D., Zavorotynska, O., Civalleri, B., Jakobsen, S., et al. (2012). H2 storage in isostructural UiO-67 and UiO-66 MOFs. Physical Chemistry Chemical Physics, 14(5), 1614–1626.

    Article  Google Scholar 

  • Chen, Q., He, Q., Lv, M., Xu, Y., Yang, H., Liu, X., & Wei, F. (2015). Selective adsorption of cationic dyes by UiO-66-NH2. Applied Surface Science, 327, 77–85.

    Article  Google Scholar 

  • Chen, H., & Ho, Y.-S. (2015). Highly cited articles in biomass research: A bibliometric analysis. Renewable and Sustainable Energy Reviews, 49, 12–20.

    Article  Google Scholar 

  • Chen, C., Kim, J., Yang, D.-A., & Ahn, W.-S. (2011). Carbon dioxide adsorption over zeolite-like metal organic frameworks (ZMOFs) having a sod topology: Structure and ion-exchange effect. Chemical Engineering Journal, 168(3), 1134–1139.

    Article  Google Scholar 

  • Chen, B., Yang, Y., Zapata, F., Lin, G., Qian, G., & Lobkovsky, E. B. (2007). Luminescent open metal sites within a metal–organic framework for sensing small molecules. Advanced Materials, 19(13), 1693–1696.

    Article  Google Scholar 

  • Chen, X.-F., Zang, H., Wang, X., Cheng, J.-G., Zhao, R.-S., Cheng, C.-G., & Lu, X.-Q. (2012a). Metal–organic framework MIL-53 (Al) as a solid-phase microextraction adsorbent for the determination of 16 polycyclic aromatic hydrocarbons in water samples by gas chromatography–tandem mass spectrometry. Analyst, 137(22), 5411–5419.

    Article  Google Scholar 

  • Chen, C., Zhang, M., Guan, Q., & Li, W. (2012b). Kinetic and thermodynamic studies on the adsorption of xylenol orange onto MIL-101 (Cr). Chemical Engineering Journal, 183, 60–67.

    Article  Google Scholar 

  • Chuang, K. Y., & Ho, Y. S. (2014). A bibliometric analysis on top-cited articles in pain research. Pain Medicine, 15(5), 732–744.

    Article  Google Scholar 

  • Chuang, K.-Y., Wang, M.-H., & Ho, Y.-S. (2011). High-impact papers presented in the subject category of water resources in the essential science indicators database of the institute for scientific information. Scientometrics, 87(3), 551–562.

    Article  Google Scholar 

  • Chuang, K.-Y., Wang, M.-H., & Ho, Y.-S. (2013). High-impact papers published in journals listed in the field of chemical engineering. Malaysian Journal of Library & Information Science, 18(2), 47–63.

    Google Scholar 

  • Corma, A., Garcia, H., & Llabrés i Xamena, F. (2010). Engineering metal organic frameworks for heterogeneous catalysis. Chemical Reviews, 110(8), 4606–4655.

    Article  Google Scholar 

  • Costas, R., & Bordons, M. (2011). Do age and professional rank influence the order of authorship in scientific publications? Some evidence from a micro-level perspective. Scientometrics, 88(1), 145–161.

    Article  Google Scholar 

  • Couck, S., Denayer, J. F., Baron, G. V., Rémy, T., Gascon, J., & Kapteijn, F. (2009). An amine-functionalized MIL-53 metal–organic framework with large separation power for CO2 and CH4. Journal of the American Chemical Society, 131(18), 6326–6327.

    Article  Google Scholar 

  • Dan-Hardi, M., Serre, C., Frot, T., Rozes, L., Maurin, G., Sanchez, C., & Férey, G. (2009). A new photoactive crystalline highly porous titanium (IV) dicarboxylate. Journal of the American Chemical Society, 131(31), 10857–10859.

    Article  Google Scholar 

  • Das, M. C., Xu, H., Wang, Z., Srinivas, G., Zhou, W., Yue, Y.-F., et al. (2011). A Zn4O-containing doubly interpenetrated porous metal–organic framework for photocatalytic decomposition of methyl orange. Chemical Communications, 47(42), 11715–11717.

    Article  Google Scholar 

  • De Combarieu, G., Morcrette, M., Millange, F., Guillou, N., Cabana, J., Grey, C., et al. (2009). Influence of the Benzoquinone sorption on the structure and electrochemical performance of the MIL-53 (Fe) hybrid porous material in a lithium-ion battery. Chemistry of Materials, 21(8), 1602–1611.

    Article  Google Scholar 

  • DeCoste, J. B., Demasky, T. J., Katz, M. J., Farha, O. K., & Hupp, J. T. (2015). A UiO-66 analogue with uncoordinated carboxylic acids for the broad-spectrum removal of toxic chemicals. New Journal of Chemistry, 39(4), 2396–2399.

    Article  Google Scholar 

  • Della Rocca, J., Liu, D., & Lin, W. (2011). Nanoscale metal–organic frameworks for biomedical imaging and drug delivery. Accounts of Chemical Research, 44(10), 957–968.

    Article  Google Scholar 

  • Díaz, K., López-González, M., del Castillo, L. F., & Riande, E. (2011). Effect of zeolitic imidazolate frameworks on the gas transport performance of ZIF8-poly (1, 4-phenylene ether-ether-sulfone) hybrid membranes. Journal of Membrane Science, 383(1), 206–213.

    Article  Google Scholar 

  • Du, J.-J., Yuan, Y.-P., Sun, J.-X., Peng, F.-M., Jiang, X., Qiu, L.-G., et al. (2011). New photocatalysts based on MIL-53 metal–organic frameworks for the decolorization of methylene blue dye. Journal of Hazardous Materials, 190(1), 945–951.

    Article  Google Scholar 

  • Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O’Keeffe, M., & Yaghi, O. M. (2002). Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science, 295(5554), 469–472.

    Article  Google Scholar 

  • Farha, O. K., Eryazici, I., Jeong, N. C., Hauser, B. G., Wilmer, C. E., Sarjeant, A. A., et al. (2012). Metal–organic framework materials with ultrahigh surface areas: Is the sky the limit? Journal of the American Chemical Society, 134(36), 15016–15021.

    Article  Google Scholar 

  • Farha, O. K., Yazaydın, A. Ö., Eryazici, I., Malliakas, C. D., Hauser, B. G., Kanatzidis, M. G., et al. (2010). De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities. Nature Chemistry, 2(11), 944–948.

    Article  Google Scholar 

  • Farrusseng, D. (2011). metal–organic frameworks: Applications from catalysis to gas storage. London: Wiley.

    Book  Google Scholar 

  • Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metal–organic frameworks: Opportunities for catalysis. Angewandte Chemie International Edition, 48(41), 7502–7513.

    Article  Google Scholar 

  • Férey, G., Latroche, M., Serre, C., Millange, F., Loiseau, T., & Percheron-Guégan, A. (2003). Hydrogen adsorption in the nanoporous metal-benzenedicarboxylate M (OH)(O2C–C6H4–CO2)(M = Al3+, Cr3+), MIL-53. Chemical Communications, 24, 2976–2977.

    Article  Google Scholar 

  • Finsy, V., Ma, L., Alaerts, L., De Vos, D., Baron, G., & Denayer, J. (2009). Separation of CO2/CH4 mixtures with the MIL-53 (Al) metal–organic framework. Microporous and Mesoporous Materials, 120(3), 221–227.

    Article  Google Scholar 

  • First, E. L., Gounaris, C. E., & Floudas, C. A. (2013). Predictive framework for shape-selective separations in three-dimensional zeolites and metal–organic frameworks. Langmuir, 29(18), 5599–5608.

    Article  Google Scholar 

  • Fu, H.-Z., & Ho, Y.-S. (2015). Top cited articles in thermodynamic research. Journal of Engineering Thermophysics, 24(1), 68–85.

    Article  Google Scholar 

  • Fu, Y., Sun, D., Chen, Y., Huang, R., Ding, Z., Fu, X., & Li, Z. (2012a). An amine-functionalized titanium metal–organic framework photocatalyst with visible-light-induced activity for Co2 reduction. Angewandte Chemie, 124(14), 3420–3423.

    Article  Google Scholar 

  • Fu, H.-Z., Wang, M.-H., & Ho, Y.-S. (2012b). The most frequently cited adsorption research articles in the Science Citation Index (Expanded). Journal of Colloid and Interface Science, 379(1), 148–156.

    Article  Google Scholar 

  • Fu, H.-Z., Wang, M.-H., & Ho, Y.-S. (2013a). Mapping of drinking water research: A bibliometric analysis of research output during 1992–2011. Science of the Total Environment, 443, 757–765.

    Article  Google Scholar 

  • Fu, Y.-Y., Yang, C.-X., & Yan, X.-P. (2013b). Incorporation of metal–organic framework UiO-66 into porous polymer monoliths to enhance the liquid chromatographic separation of small molecules. Chemical Communications, 49(64), 7162–7164.

    Article  Google Scholar 

  • Furukawa, H., Ko, N., Go, Y. B., Aratani, N., Choi, S. B., Choi, E., et al. (2010). Ultrahigh porosity in metal–organic frameworks. Science, 329(5990), 424–428.

    Article  Google Scholar 

  • Gadipelli, S., Travis, W., Zhou, W., & Guo, Z. (2014). A thermally derived and optimized structure from ZIF-8 with giant enhancement in CO2 uptake. Energy and Environmental Science, 7(7), 2232–2238.

    Article  Google Scholar 

  • Gaeta, T. J. (1999). Authorship:“law” and order. Academic Emergency Medicine, 6(4), 297–301.

    Article  Google Scholar 

  • Garfield, E. (1990). Keywords plus-ISI’s breakthrough retrieval method. 1. Expanding your searching power on current-contents on diskette. Current Contents, 32, 5–9.

    Google Scholar 

  • Gomes Silva, C., Luz, I., Llabrés i Xamena, F. X., Corma, A., & García, H. (2010). Water stable Zr–benzenedicarboxylate metal–organic frameworks as photocatalysts for hydrogen generation. Chemistry-A European Journal, 16(36), 11133–11138.

    Article  Google Scholar 

  • Guo, H., Lin, F., Chen, J., Li, F., & Weng, W. (2015). Metal–organic framework MIL-125 (Ti) for efficient adsorptive removal of Rhodamine B from aqueous solution. Applied Organometallic Chemistry, 29(1), 12–19.

    Article  Google Scholar 

  • Hamon, L., Serre, C., Devic, T., Loiseau, T., Millange, F., Férey, G., & Weireld, G. D. (2009). Comparative study of hydrogen sulfide adsorption in the MIL-53 (Al, Cr, Fe), MIL-47 (V), MIL-100 (Cr), and MIL-101 (Cr) metal–organic frameworks at room temperature. Journal of the American Chemical Society, 131(25), 8775–8777.

    Article  Google Scholar 

  • Han, Y., Li, J.-R., Xie, Y., & Guo, G. (2014). Substitution reactions in metal–organic frameworks and metal–organic polyhedra. Chemical Society Reviews, 43(16), 5952–5981.

    Article  Google Scholar 

  • Han, Y., Sheng, S., Yang, F., Xie, Y., Zhao, M., & Li, J.-R. (2015). Size-exclusive and coordination-induced selective dye adsorption in a nanotubular metal–organic framework. Journal of Materials Chemistry A, 3, 12804–12809.

  • Haque, E., Lee, J. E., Jang, I. T., Hwang, Y. K., Chang, J.-S., Jegal, J., & Jhung, S. H. (2010). Adsorptive removal of methyl orange from aqueous solution with metal–organic frameworks, porous chromium-benzenedicarboxylates. Journal of Hazardous Materials, 181(1), 535–542.

    Article  Google Scholar 

  • Hasan, Z., & Jhung, S. H. (2015). Removal of hazardous organics from water using metal–organic frameworks (MOFs): Plausible mechanisms for selective adsorptions. Journal of Hazardous Materials, 283, 329–339.

    Article  Google Scholar 

  • He, L., Li, L., Zhang, L., Xing, S., Wang, T., Li, G., et al. (2014). ZIF-8 templated fabrication of rhombic dodecahedron-shaped ZnO@ SiO2, ZIF-8@ SiO2 yolk–shell and SiO2 hollow nanoparticles. CrystEngComm, 16(29), 6534–6537.

    Article  Google Scholar 

  • Ho, Y.-S. (2012). Top-cited articles in chemical engineering in Science Citation Index Expanded: A bibliometric analysis. Chinese Journal of Chemical Engineering, 20(3), 478–488.

    Article  Google Scholar 

  • Ho, Y.-S. (2014a). A bibliometric analysis of highly cited articles in materials science. Current Science, 107(9), 1565.

    Google Scholar 

  • Ho, Y.-S. (2014b). Classic articles on social work field in Social Science Citation Index: A bibliometric analysis. Scientometrics, 98(1), 137–155.

    Article  Google Scholar 

  • Ho, Y.-S., Satoh, H., & Lin, S.-Y. (2010). Japanese lung cancer research trends and performance in Science Citation Index. Internal Medicine, 49(20), 2219–2228.

    Article  Google Scholar 

  • Horcajada, P., Chalati, T., Serre, C., Gillet, B., Sebrie, C., Baati, T., et al. (2010). Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nature Materials, 9(2), 172–178.

    Article  Google Scholar 

  • Horcajada, P., Serre, C., Vallet-Regí, M., Sebban, M., Taulelle, F., & Férey, G. (2006). Metal–organic frameworks as efficient materials for drug delivery. Angewandte Chemie, 118(36), 6120–6124.

    Article  Google Scholar 

  • Hsu, Y., & Ho, Y. (2014). Highly cited articles in health care sciences and services field in Science Citation Index Expanded. Methods of Information in Medicine, 53(6), 446–458.

    Article  Google Scholar 

  • Huang, X.-X., Qiu, L.-G., Zhang, W., Yuan, Y.-P., Jiang, X., Xie, A.-J., et al. (2012). Hierarchically mesostructured MIL-101 metal–organic frameworks: Supramolecular template-directed synthesis and accelerated adsorption kinetics for dye removal. CrystEngComm, 14(5), 1613–1617.

    Article  Google Scholar 

  • Ivanović, D., Ho, Y.-S. (2016). Highly cited articles in the Information Science and Library Science category in Social Science Citation Index: A bibliometric analysis. Journal of Librarianship and Information Science, 48(1), 36–46.

  • Janiak, C. (2003). Engineering coordination polymers towards applications. Dalton Transactions, 14, 2781–2804.

    Article  Google Scholar 

  • Janiak, C., & Vieth, J. K. (2010). MOFs, MILs and more: Concepts, properties and applications for porous coordination networks (PCNs). New Journal of Chemistry, 34(11), 2366–2388.

    Article  Google Scholar 

  • Jhung, S. H., Lee, J. H., Yoon, J. W., Serre, C., Férey, G., & Chang, J. S. (2007). Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption ability. Advanced Materials, 19(1), 121–124.

    Article  Google Scholar 

  • Jia, J., Xu, F., Long, Z., Hou, X., & Sepaniak, M. J. (2013). Metal–organic framework MIL-53 (Fe) for highly selective and ultrasensitive direct sensing of MeHg+. Chemical Communications, 49(41), 4670–4672.

    Article  Google Scholar 

  • Jing, H.-P., Wang, C.-C., Zhang, Y.-W., Wang, P., & Li, R. (2014). Photocatalytic degradation of methylene blue in ZIF-8. RSC Advances, 4(97), 54454–54462.

    Article  Google Scholar 

  • Kaye, S. S., Dailly, A., Yaghi, O. M., & Long, J. R. (2007). Impact of preparation and handling on the hydrogen storage properties of Zn4O (1, 4-benzenedicarboxylate) 3 (MOF-5). Journal of the American Chemical Society, 129(46), 14176–14177.

    Article  Google Scholar 

  • Khan, N. A., Hasan, Z., & Jhung, S. H. (2013). Adsorptive removal of hazardous materials using metal–organic frameworks (MOFs): A review. Journal of Hazardous Materials, 244, 444–456.

    Article  Google Scholar 

  • Khan, M. A., & Ho, Y.-S. (2012). Top-cited articles in environmental sciences: Merits and demerits of citation analysis. Science of the Total Environment, 431, 122–127.

    Article  Google Scholar 

  • Kim, S.-N., Kim, J., Kim, H.-Y., Cho, H.-Y., & Ahn, W.-S. (2013). Adsorption/catalytic properties of MIL-125 and NH2-MIL-125. Catalysis Today, 204, 85–93.

    Article  Google Scholar 

  • Kim, S.-N., Lee, Y.-R., Hong, S.-H., Jang, M.-S., & Ahn, W.-S. (2015). Pilot-scale synthesis of a zirconium-benzenedicarboxylate UiO-66 for CO2 adsorption and catalysis. Catalysis Today, 245, 54–60.

    Article  Google Scholar 

  • Klein, N., Henschel, A., & Kaskel, S. (2010). n-Butane adsorption on Cu3 (btc)2 and MIL-101. Microporous and Mesoporous Materials, 129(1), 238–242.

    Article  Google Scholar 

  • Klinowski, J., Almeida Paz, F. A., Silva, P., & Rocha, J. (2011). Microwave-assisted synthesis of metal–organic frameworks. Dalton Transactions, 40(2), 321–330. doi:10.1039/C0DT00708K.

    Article  Google Scholar 

  • Kong, L., Zhang, X., Liu, Y., Li, S., Liu, H., Qiu, J., & Yeung, K. L. (2014). In situ fabrication of high-permeance ZIF-8 tubular membranes in a continuous flow system. Materials Chemistry and Physics, 148(1), 10–16.

    Article  Google Scholar 

  • Konur, O. (2011). The scientometric evaluation of the research on the algae and bio-energy. Applied Energy, 88(10), 3532–3540.

    Article  Google Scholar 

  • Kumari, G., Jayaramulu, K., Maji, T. K., & Narayana, C. (2013). Temperature induced structural transformations and gas adsorption in the zeolitic imidazolate framework ZIF-8: A Raman study. The Journal of Physical Chemistry A, 117(43), 11006–11012.

    Article  Google Scholar 

  • Kuppler, R. J., Timmons, D. J., Fang, Q.-R., Li, J.-R., Makal, T. A., Young, M. D., et al. (2009). Potential applications of metal–organic frameworks. Coordination Chemistry Reviews, 253(23), 3042–3066.

    Article  Google Scholar 

  • Kwon, H. T., & Jeong, H.-K. (2013). Highly propylene-selective supported zeolite-imidazolate framework (ZIF-8) membranes synthesized by rapid microwave-assisted seeding and secondary growth. Chemical Communications, 49(37), 3854–3856.

    Article  Google Scholar 

  • Latroche, M., Surblé, S., Serre, C., Mellot-Draznieks, C., Llewellyn, P. L., Lee, J. H., et al. (2006). Hydrogen storage in the giant-pore metal–organic frameworks MIL-100 and MIL-101. Angewandte Chemie International Edition, 45(48), 8227–8231.

    Article  Google Scholar 

  • Laurier, K. G., Vermoortele, F., Ameloot, R., De Vos, D. E., Hofkens, J., & Roeffaers, M. B. (2013). Iron (III)-based metal–organic frameworks as visible light photocatalysts. Journal of the American Chemical Society, 135(39), 14488–14491.

    Article  Google Scholar 

  • Lee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T., & Hupp, J. T. (2009). Metal–organic framework materials as catalysts. Chemical Society Reviews, 38(5), 1450–1459.

    Article  Google Scholar 

  • Lefaivre, K. A., Shadgan, B., & O’Brien, P. J. (2011). 100 most cited articles in orthopaedic surgery. Clinical Orthopaedics and Related Research, 469(5), 1487–1497.

    Article  Google Scholar 

  • Levitt, J. M., & Thelwall, M. (2008). Patterns of annual citation of highly cited articles and the prediction of their citation ranking: A comparison across subjects. Scientometrics, 77(1), 41–60.

    Article  Google Scholar 

  • Li, P.-Z., Aranishi, K., & Xu, Q. (2012). ZIF-8 immobilized nickel nanoparticles: Highly effective catalysts for hydrogen generation from hydrolysis of ammonia borane. Chemical Communications, 48(26), 3173–3175.

    Article  Google Scholar 

  • Li, X., Chen, H., Dang, Y., Lin, Y., Larson, C. A., & Roco, M. C. (2008). A longitudinal analysis of nanotechnology literature: 1976–2004. Journal of Nanoparticle Research, 10(1), 3–22.

    Article  Google Scholar 

  • Li, H., Eddaoudi, M., O’Keeffe, M., & Yaghi, O. M. (1999). Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature, 402(6759), 276–279.

    Article  Google Scholar 

  • Li, Z., & Ho, Y.-S. (2008). Use of citation per publication as an indicator to evaluate contingent valuation research. Scientometrics, 75(1), 97–110.

    Article  Google Scholar 

  • Li, J.-R., Kuppler, R. J., & Zhou, H.-C. (2009). Selective gas adsorption and separation in metal–organic frameworks. Chemical Society Reviews, 38(5), 1477–1504.

    Article  Google Scholar 

  • Li, J.-R., Yu, J., Lu, W., Sun, L.-B., Sculley, J., Balbuena, P. B., & Zhou, H.-C. (2013). Porous materials with pre-designed single-molecule traps for CO2 selective adsorption. Nature communications, 4, 1538.

    Article  Google Scholar 

  • Liang, R., Jing, F., Shen, L., Qin, N., & Wu, L. (2015a). MIL-53 (Fe) as a highly efficient bifunctional photocatalyst for the simultaneous reduction of Cr(VI) and oxidation of dyes. Journal of Hazardous Materials, 287, 364–372.

    Article  Google Scholar 

  • Liang, R., Shen, L., Jing, F., Wu, W., Qin, N., Lin, R., & Wu, L. (2015b). NH 2-mediated indium metal–organic framework as a novel visible-light-driven photocatalyst for reduction of the aqueous Cr(VI). Applied Catalysis, B: Environmental, 162, 245–251.

    Article  Google Scholar 

  • Lin, K.-S., Adhikari, A. K., Ku, C.-N., Chiang, C.-L., & Kuo, H. (2012). Synthesis and characterization of porous HKUST-1 metal organic frameworks for hydrogen storage. International Journal of Hydrogen Energy, 37(18), 13865–13871.

    Article  Google Scholar 

  • Liu, Y.-H., Lu, Y.-L., Tsai, H.-L., Wang, J.-C., & Lu, K.-L. (2001). Hydrothermal synthesis, crystal structure, and magnetic property of copper (II) coordination networks with chessboard tunnels. Journal of Solid State Chemistry, 158(2), 315–319.

    Article  Google Scholar 

  • Liu, D., Ma, X., Xi, H., & Lin, Y. (2014). Gas transport properties and propylene/propane separation characteristics of ZIF-8 membranes. Journal of Membrane Science, 451, 85–93.

    Article  Google Scholar 

  • Liu, J., Wang, Y., Benin, A. I., Jakubczak, P., Willis, R. R., & LeVan, M. D. (2010). CO2/H2O adsorption equilibrium and rates on metal–organic frameworks: HKUST-1 and Ni/DOBDC. Langmuir, 26(17), 14301–14307.

    Article  Google Scholar 

  • Liu, S., Xiang, Z., Hu, Z., Zheng, X., & Cao, D. (2011). Zeolitic imidazolate framework-8 as a luminescent material for the sensing of metal ions and small molecules. Journal of Materials Chemistry, 21(18), 6649–6653.

    Article  Google Scholar 

  • Llewellyn, P. L., Bourrelly, S., Serre, C., Vimont, A., Daturi, M., Hamon, L., et al. (2008). High uptakes of CO2 and CH4 in mesoporous metal organic frameworks MIL-100 and MIL-101. Langmuir, 24(14), 7245–7250.

    Article  Google Scholar 

  • Llewellyn, P., Horcajada, P., Maurin, G., Devic, T., Rosenbach, N., Bourrelly, S., et al. (2009). Complex adsorption of short linear alkanes in the flexible metal–organic-framework MIL-53 (Fe). Journal of the American Chemical Society, 131(36), 13002–13008.

    Article  Google Scholar 

  • Long, X., Huang, J.-Z., & Ho, Y.-S. (2014). A historical review of classic articles in surgery field. The American Journal of Surgery, 208(5), 841–849.

    Article  Google Scholar 

  • Long, J., Wang, S., Ding, Z., Wang, S., Zhou, Y., Huang, L., & Wang, X. (2012). Amine-functionalized zirconium metal–organic framework as efficient visible-light photocatalyst for aerobic organic transformations. Chemical Communications, 48(95), 11656–11658.

    Article  Google Scholar 

  • Long, J. R., & Yaghi, O. M. (2009). The pervasive chemistry of metal–organic frameworks. Chemical Society Reviews, 38(5), 1213–1214. doi:10.1039/B903811F.

    Article  Google Scholar 

  • Lu, G., & Hupp, J. T. (2010). Metal–organic frameworks as sensors: A ZIF-8 based Fabry–Pérot device as a selective sensor for chemical vapors and gases. Journal of the American Chemical Society, 132(23), 7832–7833.

    Article  Google Scholar 

  • Mahata, P., Madras, G., & Natarajan, S. (2006). Novel photocatalysts for the decomposition of organic dyes based on metal–organic framework compounds. The Journal of Physical Chemistry B, 110(28), 13759–13768.

    Article  Google Scholar 

  • Maksimchuk, N., Timofeeva, M., Melgunov, M., Shmakov, A., Chesalov, Y. A., Dybtsev, D., et al. (2008). Heterogeneous selective oxidation catalysts based on coordination polymer MIL-101 and transition metal-substituted polyoxometalates. Journal of Catalysis, 257(2), 315–323.

    Article  Google Scholar 

  • Mao, Y., Huang, H., Cao, W., Li, J., Sun, L., Jin, X., & Peng, X. (2013). Room temperature synthesis of free-standing HKUST-1 membranes from copper hydroxide nanostrands for gas separation. Chemical Communications, 49(50), 5666–5668.

    Article  Google Scholar 

  • Mao, N., Wang, M.-H., & Ho, Y.-S. (2010). A bibliometric study of the trend in articles related to risk assessment published in Science Citation Index. Human and Ecological Risk Assessment, 16(4), 801–824.

    Article  Google Scholar 

  • Martis, M., Mori, K., Fujiwara, K., Ahn, W.-S., & Yamashita, H. (2013). Amine-functionalized MIL-125 with imbedded palladium nanoparticles as an efficient catalyst for dehydrogenation of formic acid at ambient temperature. The Journal of Physical Chemistry C, 117(44), 22805–22810.

    Article  Google Scholar 

  • McCarthy, M. C., Varela-Guerrero, V., Barnett, G. V., & Jeong, H.-K. (2010). Synthesis of zeolitic imidazolate framework films and membranes with controlled microstructures. Langmuir, 26(18), 14636–14641.

    Article  Google Scholar 

  • Millange, F., Guillou, N., Medina, M. E., Férey, G., Carlin-Sinclair, A., Golden, K. M., & Walton, R. I. (2010). Selective sorption of organic molecules by the flexible porous hybrid metal–organic framework MIL-53 (Fe) controlled by various host–guest interactions. Chemistry of Materials, 22(14), 4237–4245.

    Article  Google Scholar 

  • Millange, F., Serre, C., & Férey, G. (2002). Synthesis, structure determination and properties of MIL-53as and MIL-53ht: The first Cr III hybrid inorganic–organic microporous solids: CrIII(OH)·{O2C–C6H4–CO2}·{HO2C–C6H4–CO2H}x. Chemical Communications, 8, 822–823.

    Article  Google Scholar 

  • Millward, A. R., & Yaghi, O. M. (2005). Metal–organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. Journal of the American Chemical Society, 127(51), 17998–17999.

    Article  Google Scholar 

  • Moellmer, J., Moeller, A., Dreisbach, F., Glaeser, R., & Staudt, R. (2011). High pressure adsorption of hydrogen, nitrogen, carbon dioxide and methane on the metal–organic framework HKUST-1. Microporous and Mesoporous Materials, 138(1), 140–148.

    Article  Google Scholar 

  • Moreira, M. A., Santos, J. C., Ferreira, A. F., Loureiro, J. M., Ragon, F., Horcajada, P., et al. (2012). Effect of ethylbenzene in p-xylene selectivity of the porous titanium amino terephthalate MIL-125 (Ti)_NH2. Microporous and Mesoporous Materials, 158, 229–234.

    Article  Google Scholar 

  • Mueller, T., & Ceder, G. (2005). A density functional theory study of hydrogen adsorption in MOF-5. The Journal of Physical Chemistry B, 109(38), 17974–17983.

    Article  Google Scholar 

  • Münch, A. S., & Mertens, F. O. (2012). HKUST-1 as an open metal site gas chromatographic stationary phase—Capillary preparation, separation of small hydrocarbons and electron donating compounds, determination of thermodynamic data. Journal of Materials Chemistry, 22(20), 10228–10234.

    Article  Google Scholar 

  • Nasalevich, M., Becker, R., Ramos-Fernandez, E., Castellanos, S., Veber, S. L., Fedin, M. V., et al. (2015). Co@NH2-MIL-125 (Ti): Cobaloxime-derived metal–organic framework-based composite for light-driven H2 production. Energy and Environmental Science, 8(1), 364–375.

    Article  Google Scholar 

  • Nasalevich, M. A., Goesten, M. G., Savenije, T. J., Kapteijn, F., & Gascon, J. (2013). Enhancing optical absorption of metal–organic frameworks for improved visible light photocatalysis. Chemical Communications, 49(90), 10575–10577.

    Article  Google Scholar 

  • Nasalevich, M., Van der Veen, M., Kapteijn, F., & Gascon, J. (2014). Metal–organic frameworks as heterogeneous photocatalysts: Advantages and challenges. CrystEngComm, 16(23), 4919–4926.

    Article  Google Scholar 

  • Pan, Y., Liu, Y., Zeng, G., Zhao, L., & Lai, Z. (2011). Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chemical Communications, 47(7), 2071–2073.

    Article  Google Scholar 

  • Park, K. S., Ni, Z., Côté, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., et al. (2006). Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences, 103(27), 10186–10191.

    Article  Google Scholar 

  • Patil, D. V., Rallapalli, P. B. S., Dangi, G. P., Tayade, R. J., Somani, R. S., & Bajaj, H. C. (2011). MIL-53 (Al): An efficient adsorbent for the removal of nitrobenzene from aqueous solutions. Industrial and Engineering Chemistry Research, 50(18), 10516–10524.

    Article  Google Scholar 

  • Peralta, D., Barthelet, K., Pérez-Pellitero, J., Chizallet, C., Gr, Chaplais, Al, Simon-Masseron, & Pirngruber, G. D. (2012). Adsorption and separation of xylene isomers: CPO-27-Ni vs HKUST-1 vs NaY. The Journal of Physical Chemistry C, 116(41), 21844–21855.

    Article  Google Scholar 

  • Phan, N. T., Le, K. K., & Phan, T. D. (2010). MOF-5 as an efficient heterogeneous catalyst for Friedel–Crafts alkylation reactions. Applied Catalysis, A: General, 382(2), 246–253.

    Article  Google Scholar 

  • Ragon, F., Campo, B., Yang, Q., Martineau, C., Wiersum, A. D., Lago, A., et al. (2015). Acid-functionalized UiO-66 (Zr) MOFs and their evolution after intra-framework cross-linking: Structural features and sorption properties. Journal of Materials Chemistry A, 3(7), 3294–3309.

    Article  Google Scholar 

  • Rehn, C., Kronman, U., & Wadskog, D. (2007). Bibliometric indicators—definitions and usage at Karolinska Institutet. Karolinska Institutet, 13, 2012.

    Google Scholar 

  • Rieter, W. J., Taylor, K. M., & Lin, W. (2007). Surface modification and functionalization of nanoscale metal–organic frameworks for controlled release and luminescence sensing. Journal of the American Chemical Society, 129(32), 9852–9853.

    Article  Google Scholar 

  • Rojas-Sola, J. I., & Aguilera-Garcia, A. I. (2014). Global bibliometric analysis of the materials, ceramics subject category from the web of science (1997–2012). Boletin de la Sociedad Espanola de Ceramica y Vidrio, 53(6), 2–12.

    Article  Google Scholar 

  • Rosi, N. L., Eckert, J., Eddaoudi, M., Vodak, D. T., Kim, J., O’Keeffe, M., & Yaghi, O. M. (2003). Hydrogen storage in microporous metal–organic frameworks. Science, 300(5622), 1127–1129.

    Article  Google Scholar 

  • Rosi, N. L., Kim, J., Eddaoudi, M., Chen, B., O’Keeffe, M., & Yaghi, O. M. (2005). Rod packings and metal–organic frameworks constructed from rod-shaped secondary building units. Journal of the American Chemical Society, 127(5), 1504–1518.

    Article  Google Scholar 

  • Sachse, A., Ameloot, R., Coq, B., Fajula, F., Coasne, B., De Vos, D., & Galarneau, A. (2012). In situ synthesis of Cu–BTC (HKUST-1) in macro-/mesoporous silica monoliths for continuous flow catalysis. Chemical Communications, 48(39), 4749–4751.

    Article  Google Scholar 

  • Saha, D., Bao, Z., Jia, F., & Deng, S. (2010). Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and zeolite 5A. Environmental Science and Technology, 44(5), 1820–1826.

    Article  Google Scholar 

  • Serra-Crespo, P., Ramos-Fernandez, E. V., Gascon, J., & Kapteijn, F. (2011). Synthesis and characterization of an amino functionalized MIL-101 (Al): Separation and catalytic properties. Chemistry of Materials, 23(10), 2565–2572.

    Article  Google Scholar 

  • Shah, M., McCarthy, M. C., Sachdeva, S., Lee, A. K., & Jeong, H.-K. (2012). Current status of metal–organic framework membranes for gas separations: Promises and challenges. Industrial and Engineering Chemistry Research, 51(5), 2179–2199.

    Article  Google Scholar 

  • Shekhah, O., Liu, J., Fischer, R., & Wöll, C. (2011). MOF thin films: Existing and future applications. Chemical Society Reviews, 40(2), 1081–1106.

    Article  Google Scholar 

  • Shen, L., Liang, S., Wu, W., Liang, R., & Wu, L. (2013a). Multifunctional NH2-mediated zirconium metal–organic framework as an efficient visible-light-driven photocatalyst for selective oxidation of alcohols and reduction of aqueous Cr(VI). Dalton Transactions, 42(37), 13649–13657.

    Article  Google Scholar 

  • Shen, L., Liang, S., Wu, W., Liang, R., & Wu, L. (2013b). CdS-decorated UiO-66 (NH2) nanocomposites fabricated by a facile photodeposition process: An efficient and stable visible-light-driven photocatalyst for selective oxidation of alcohols. Journal of Materials Chemistry A, 1(37), 11473–11482.

    Article  Google Scholar 

  • Shen, L., Wu, W., Liang, R., Lin, R., & Wu, L. (2013c). Highly dispersed palladium nanoparticles anchored on UiO-66 (NH2) metal–organic framework as a reusable and dual functional visible-light-driven photocatalyst. Nanoscale, 5(19), 9374–9382.

    Article  Google Scholar 

  • Stock, N., & Biswas, S. (2011). Synthesis of metal–organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chemical Reviews, 112(2), 933–969.

    Article  Google Scholar 

  • Sun, D., Fu, Y., Liu, W., Ye, L., Wang, D., Yang, L., et al. (2013). Studies on Photocatalytic CO2 reduction over NH2-Uio-66 (Zr) and its derivatives: Towards a better understanding of photocatalysis on metal–organic frameworks. Chemistry-A European Journal, 19(42), 14279–14285.

    Article  Google Scholar 

  • Tran, U. P., Le, K. K., & Phan, N. T. (2011). Expanding applications of metal–organic frameworks: Zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the knoevenagel reaction. ACS Catalysis, 1(2), 120–127.

    Article  Google Scholar 

  • Trung, T. K., Trens, P., Tanchoux, N., Bourrelly, S., Llewellyn, P. L., Loera-Serna, S., et al. (2008). Hydrocarbon adsorption in the flexible metal organic frameworks MIL-53 (Al, Cr). Journal of the American Chemical Society, 130(50), 16926–16932.

    Article  Google Scholar 

  • Uemura, K., Matsuda, R., & Kitagawa, S. (2005). Flexible microporous coordination polymers. Journal of Solid State Chemistry, 178(8), 2420–2429.

    Article  Google Scholar 

  • Vaesen, S., Guillerm, V., Yang, Q., Wiersum, A. D., Marszalek, B., Gil, B., et al. (2013). A robust amino-functionalized titanium (IV) based MOF for improved separation of acid gases. Chemical Communications, 49(86), 10082–10084.

    Article  Google Scholar 

  • Valenzano, L., Civalleri, B., Chavan, S., Bordiga, S., Nilsen, M. H., Jakobsen, S., et al. (2011). Disclosing the complex structure of UiO-66 metal organic framework: A synergic combination of experiment and theory. Chemistry of Materials, 23(7), 1700–1718.

    Article  Google Scholar 

  • Vasconcelos, I. B., da Silva, T. G., Militão, G. C., Soares, T. A., Rodrigues, N. M., Rodrigues, M. O., et al. (2012). Cytotoxicity and slow release of the anti-cancer drug doxorubicin from ZIF-8. RSC Advances, 2(25), 9437–9442.

    Article  Google Scholar 

  • Venna, S. R., & Carreon, M. A. (2009). Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation. Journal of the American Chemical Society, 132(1), 76–78.

    Article  Google Scholar 

  • Vermoortele, F., Bueken, B., Gl, Le Bars, Van de Voorde, B., Vandichel, M., Houthoofd, K., et al. (2013). Synthesis modulation as a tool to increase the catalytic activity of metal–organic frameworks: The unique case of UiO-66 (Zr). Journal of the American Chemical Society, 135(31), 11465–11468.

    Article  Google Scholar 

  • Vermoortele, F., Maes, M., Moghadam, P. Z., Lennox, M. J., Ragon, F., Boulhout, M., et al. (2011). p-xylene-selective metal–organic frameworks: A case of topology-directed selectivity. Journal of the American Chemical Society, 133(46), 18526–18529.

    Article  Google Scholar 

  • Wang, C.-C., Du, X.-D., Li, J., Guo, X.-X., Wang, P., & Zhang, J. (2016). Photocatalytic Cr(VI) reduction in metal–organic frameworks: A mini-review. Applied Catalysis, B: Environmental, 193, 198–216.

    Article  Google Scholar 

  • Wang, B., Huang, H., Lv, X.-L., Xie, Y., Li, M., & Li, J.-R. (2014a). Tuning CO2 selective adsorption over N2 and CH4 in UiO-67 analogues through ligand functionalization. Inorganic Chemistry, 53(17), 9254–9259.

    Article  Google Scholar 

  • Wang, M.-H., Li, J., & Ho, Y.-S. (2011). Research articles published in water resources journals: A bibliometric analysis. Desalination and Water Treatment, 28(1–3), 353–365.

    Article  Google Scholar 

  • Wang, C.-C., Li, J.-R., Lv, X.-L., Zhang, Y.-Q., & Guo, G. (2014b). Photocatalytic organic pollutants degradation in metal–organic frameworks. Energy and Environmental Science, 7(9), 2831–2867.

    Article  Google Scholar 

  • Wang, J.-L., Wang, C., & Lin, W. (2012). Metal–organic frameworks for light harvesting and photocatalysis. ACS Catalysis, 2(12), 2630–2640.

    Article  Google Scholar 

  • Wang, Y., Yang, J., Liu, Y. Y., & Ma, J. F. (2013). Controllable syntheses of porous metal–organic frameworks: Encapsulation of LnIII cations for tunable luminescence and small drug molecules for efficient delivery. Chemistry-A European Journal, 19(43), 14591–14599.

    Article  Google Scholar 

  • Wang, C.-C., Zhang, Y.-Q., Li, J., & Wang, P. (2015). Photocatalytic CO2 reduction in metal–organic frameworks: A mini review. Journal of Molecular Structure, 1083, 127–136.

    Article  Google Scholar 

  • Wen, M., Mori, K., Kamegawa, T., & Yamashita, H. (2014). Amine-functionalized MIL-101 (Cr) with imbedded platinum nanoparticles as a durable photocatalyst for hydrogen production from water. Chemical Communications, 50(79), 11645–11648.

    Article  Google Scholar 

  • Wiersum, A. D., Soubeyrand-Lenoir, E., Yang, Q., Moulin, B., Guillerm, V., Yahia, M. B., et al. (2011). An evaluation of UiO-66 for gas-based applications. Chemistry An Asian Journal, 6(12), 3270–3280.

    Article  Google Scholar 

  • Wu, H., Chua, Y. S., Krungleviciute, V., Tyagi, M., Chen, P., Yildirim, T., & Zhou, W. (2013a). Unusual and highly tunable missing-linker defects in zirconium metal–organic framework UiO-66 and their important effects on gas adsorption. Journal of the American Chemical Society, 135(28), 10525–10532.

    Article  Google Scholar 

  • Wu, C.-D., Hu, A., Zhang, L., & Lin, W. (2005). A homochiral porous metal–organic framework for highly enantioselective heterogeneous asymmetric catalysis. Journal of the American Chemical Society, 127(25), 8940–8941.

    Article  Google Scholar 

  • Wu, H., Yildirim, T., & Zhou, W. (2013b). Exceptional mechanical stability of highly porous zirconium metal–organic framework UiO-66 and its important implications. The Journal of Physical Chemistry Letters, 4(6), 925–930.

    Article  Google Scholar 

  • Wu, H., Zhou, W., & Yildirim, T. (2007). Hydrogen storage in a prototypical zeolitic imidazolate framework-8. Journal of the American Chemical Society, 129(17), 5314–5315.

    Article  Google Scholar 

  • Xie, K., Shan, C., Qi, J., Qiao, S., Zeng, Q., & Zhang, L. (2015). Study of adsorptive removal of phenol by MOF-5. Desalination and Water Treatment, 54(3), 654–659.

    Article  Google Scholar 

  • Xie, Y., Yang, H., Wang, Z. U., Liu, Y., Zhou, H.-C., & Li, J.-R. (2014). Unusual preservation of polyhedral molecular building units in a metal–organic framework with evident desymmetrization in ligand design. Chemical Communications, 50(5), 563–565.

    Article  Google Scholar 

  • Xie, S., Zhang, J., & Ho, Y.-S. (2008). Assessment of world aerosol research trends by bibliometric analysis. Scientometrics, 77(1), 113–130.

    Article  Google Scholar 

  • Yaghi, O., & Li, H. (1995). Hydrothermal synthesis of a metal–organic framework containing large rectangular channels. Journal of the American Chemical Society, 117(41), 10401–10402.

    Article  Google Scholar 

  • Yaghi, O. M., Li, G., & Li, H. (1995). Selective binding and removal of guests in a microporous metal–organic framework. Nature, 378(6558), 703–706.

    Article  Google Scholar 

  • Yaghi, O. M., O’Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M., & Kim, J. (2003). Reticular synthesis and the design of new materials. Nature, 423(6941), 705–714.

    Article  Google Scholar 

  • Yang, Q., Guillerm, V., Ragon, F., Wiersum, A. D., Llewellyn, P. L., Zhong, C., et al. (2012). CH 4 storage and CO2 capture in highly porous zirconium oxide based metal–organic frameworks. Chemical Communications, 48(79), 9831–9833.

    Article  Google Scholar 

  • Yank, V., & Rennie, D. (1999). Disclosure of researcher contributions: A study of original research articles in The Lancet. Annals of Internal Medicine, 130(8), 661–670.

    Article  Google Scholar 

  • Zacher, D., Shekhah, O., Woll, C., & Fischer, R. A. (2009). Thin films of metal–organic frameworks. Chemical Society Reviews, 38(5), 1418–1429. doi:10.1039/B805038B.

    Article  Google Scholar 

  • Zhang, R., Ji, S., Wang, N., Wang, L., Zhang, G., & Li, J. R. (2014a). Coordination-driven in situ self-assembly strategy for the preparation of metal–organic framework hybrid membranes. Angewandte Chemie International Edition, 53(37), 9775–9779.

    Article  Google Scholar 

  • Zhang, T., & Lin, W. (2014). Metal–organic frameworks for artificial photosynthesis and photocatalysis. Chemical Society Reviews, 43(16), 5982–5993.

    Article  Google Scholar 

  • Zhang, Y.-Q., Wang, C.-C., Zhu, T., Wang, P., & Gao, S.-J. (2015). Ultra-high uptake and selective adsorption of organic dyes with a novel polyoxomolybdate-based organic–inorganic hybrid compound. RSC Advances, 5(57), 45688–45692. doi:10.1039/C5RA07513K.

    Article  Google Scholar 

  • Zhang, W., Wu, Z.-Y., Jiang, H.-L., & Yu, S.-H. (2014b). Nanowire-directed templating synthesis of metal–organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced electrocatalysis. Journal of the American Chemical Society, 136(41), 14385–14388.

    Article  Google Scholar 

  • Zhang, Z., Xian, S., Xi, H., Wang, H., & Li, Z. (2011). Improvement of CO2 adsorption on ZIF-8 crystals modified by enhancing basicity of surface. Chemical Engineering Science, 66(20), 4878–4888.

    Article  Google Scholar 

  • Zhang, Z., Xian, S., Xia, Q., Wang, H., Li, Z., & Li, J. (2013). Enhancement of CO2 adsorption and CO2/N2 selectivity on ZIF-8 via postsynthetic modification. AIChE Journal, 59(6), 2195–2206.

    Article  Google Scholar 

  • Zhang, G., Xie, S., & Ho, Y.-S. (2009). A bibliometric analysis of world volatile organic compounds research trends. Scientometrics, 83(2), 477–492.

    Article  Google Scholar 

  • Zhao, Z., Li, Z., & Lin, Y. (2009). Adsorption and diffusion of carbon dioxide on metal–organic framework (MOF-5). Industrial and Engineering Chemistry Research, 48(22), 10015–10020.

    Article  Google Scholar 

  • Zhao, X., Liu, S., Tang, Z., Niu, H., Cai, Y., Meng,. W, Wu, F., & Giesy, J. P. (2015). Synthesis of magnetic metal–organic framework (MOF) for efficient removal of organic dyes from water. Scientific Reports, 5, 11849.

  • Zhao, W.-W., Zhang, C.-Y., Yan, Z.-G., Bai, L.-P., Wang, X., Huang, H., et al. (2014). Separations of substituted benzenes and polycyclic aromatic hydrocarbons using normal-and reverse-phase high performance liquid chromatography with UiO-66 as the stationary phase. Journal of Chromatography A, 1370, 121–128.

    Article  Google Scholar 

  • Zhou, H.-C., & Kitagawa, S. (2014). Metal–organic frameworks (MOFs). Chemical Society Reviews, 43(16), 5415–5418.

    Article  Google Scholar 

  • Zhu, Q.-L., & Xu, Q. (2014). Metal–organic framework composites. Chemical Society Reviews, 43(16), 5468–5512. doi:10.1039/C3CS60472A.

    Article  Google Scholar 

  • Zhuang, J. L., Ceglarek, D., Pethuraj, S., & Terfort, A. (2011). Rapid room-temperature synthesis of metal–organic framework HKUST-1 crystals in bulk and as oriented and patterned thin films. Advanced Functional Materials, 21(8), 1442–1447.

    Article  Google Scholar 

  • Zhuang, J., Kuo, C.-H., Chou, L.-Y., Liu, D.-Y., Weerapana, E., & Tsung, C.-K. (2014). Optimized metal–organic-framework nanospheres for drug delivery: Evaluation of small-molecule encapsulation. ACS Nano, 8(3), 2812–2819.

    Article  Google Scholar 

  • Zlotea, C., Phanon, D., Mazaj, M., Heurtaux, D., Guillerm, V., Serre, C., et al. (2011). Effect of NH2 and CF3 functionalization on the hydrogen sorption properties of MOFs. Dalton Transactions, 40(18), 4879–4881.

    Article  Google Scholar 

  • Žunkovič, E., Mazaj, M., Mali, G., Rangus, M., Devic, T., Serre, C., & Logar, N. Z. (2015). Structural study of Ni-or Mg-based complexes incorporated within UiO-66-NH2 framework and their impact on hydrogen sorption properties. Journal of Solid State Chemistry, 225, 209–215.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the financial support from National Natural Science Foundation of China (51578034), the Beijing Natural Science Foundation & Scientific Research Key Program of Beijing Municipal Commission of Education (KZ201410016018, KM201510016017), the Training Program Foundation for the Beijing Municipal Excellent Talents (2013D005017000004), the Importation & Development of High-Caliber Talents Project of Beijing Municipal Institutions (CIT&CD201404076), and 2011 Project for Cooperation & Innovation under the Jurisdiction of Beijing Municipality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuh-Shan Ho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, CC., Ho, YS. Research trend of metal–organic frameworks: a bibliometric analysis. Scientometrics 109, 481–513 (2016). https://doi.org/10.1007/s11192-016-1986-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-016-1986-2

Keywords

Navigation