Skip to main content
Log in

Quantifying the changing role of past publications

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Our current societies increasingly rely on electronic repositories of collective knowledge. An archetype of these databases is the Web of Science (WoS) that stores scientific publications. In contrast to several other forms of knowledge—e.g., Wikipedia articles—a scientific paper does not change after its “birth”. Nonetheless, from the moment a paper is published it exists within the evolving web of other papers, thus, its actual meaning to the reader changes. To track how scientific ideas (represented by groups of scientific papers) appear and evolve, we apply a novel combination of algorithms explicitly allowing for papers to change their groups. We (1) identify the overlapping clusters of the undirected yearly co-citation networks of the WoS (1975–2008) and (2) match these yearly clusters (groups) to form group timelines. After visualizing the longest lived groups of the entire data set we assign topic labels to all groups. We find that in the entire WoS multidisciplinarity is clearly over-represented among cutting edge ideas. In addition, we provide detailed examples for papers that (1) change their topic labels and (2) move between groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. KeyWords Plus®  are “index terms created by Thomson Reuters from significant, frequently occurring words in the titles of an article’s cited references.”

References

  • Albarrán, P., Crespo, J. A., Ortuño, I., & Ruiz-Castillo, J. (2011). The skewness of science in 219 sub-fields and a number of aggregates. Scientometrics, 88(2), 385–397.

    Article  Google Scholar 

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410.

    Article  Google Scholar 

  • Bodor, A., Csabai, I., Mahoney, M. W., & Solymosi, N. (2012). rCUR: An R package for CUR matrix decomposition. BMC Bioinformatics, 13(1), 103.

    Article  Google Scholar 

  • Braam, R. R., & Moed, H. F. (1991a). Mapping of science by combined co-citation and word analysis. I. Structural aspects. Journal of the American Society for Information Science, 42(4), 233–251.

    Article  Google Scholar 

  • Braam, R. R., & Moed, H. F. (1991b). Mapping of science by combined co-citation and word analysis. II: Dynamical aspects. Journal of the American Society for Information Science, 42(4), 252–266.

    Article  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1), 248–254.

    Article  Google Scholar 

  • Chen, C. (2004). Searching for intellectual turning points: Progressive knowledge domain visualization. Proceedings of the National Academy of Sciences of the United States of America, 101(suppl. 1), 5303–5310.

    Article  Google Scholar 

  • Chen, C. (2006). CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57(3), 359–377.

    Article  Google Scholar 

  • Chen, C., Ibekwe-SanJuan, F., & Hou, J. (2010). The structure and dynamics of cocitation clusters: A multiple-perspective cocitation analysis. Journal of the American Society for Information Science and Technology, 61(7), 1386–1409.

    Article  Google Scholar 

  • Chomczynski, P., & Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Analytical Biochemistry, 162(1), 156–159.

    Article  Google Scholar 

  • Collins, J. J., Imhoff, T. T., & Grigg, P. (1997). Noise-mediated enhancements and decrements in human tactile sensation. Physical Review E, 56(1), 923–926.

    Article  Google Scholar 

  • de Solla Price, D. J. (1965). Networks of scientific papers. Science, 149, 510–515.

    Article  Google Scholar 

  • Érdi, P., Makovi, K., Somogyvári, Z., Strandburg, K., Tobochnik, J., Volf, P., et al. (2012). Prediction of emerging technologies based on analysis of the US patent citation network. Scientometrics, 95(1), 225–242.

    Article  Google Scholar 

  • Gipp, B., & Beel, J. (2009). Citation Proximity Analysis (CPA)—A new approach for identifying related work based on Co-Citation Analysis. In Proceedings of the 12th international conference on scientometrics and informetrics (ISSI’09), Rio de Janeiro (Brazil): International Society for Scientometrics and Informetrics (Vol. 2, pp. 571–575).

  • Glänzel, W., & Schubert, A. (2003). A new classification scheme of science fields and subfields designed for scientometric evaluation purposes. Scientometrics, 56(3), 357–367.

    Article  Google Scholar 

  • Glänzel, W., Schubert, A., & Czerwon, H. J. (1999a). An item-by-item subject classification of papers published in multidisciplinary and general journals using reference analysis. Scientometrics, 44(3), 427–439.

    Article  Google Scholar 

  • Glänzel, W., Schubert, A., Schoepflin, U., & Czerwon, H. J. (1999b). An item-by-item subject classification of papers published in journals covered by the SSCI database using reference analysis. Scientometrics, 46(3), 431–441.

    Article  Google Scholar 

  • González, M. C., Herrmann, H. J., Kertész, J., & Vicsek, T. (2007). Community structure and ethnic preferences in school friendship networks. Physica A, 379(1), 307–316.

    Article  Google Scholar 

  • Griffith, B. C., Small, H. G., Stonehill, J. A., & Dey, S. (1974). The structure of scientific literatures II: Toward a macro- and microstructure for science. Science Studies, 4(4), 339–365.

    Article  Google Scholar 

  • Kessler, M. M. (1963). Bibliographic coupling between scientific papers. American Documentation, 14(1), 10–25.

    Article  Google Scholar 

  • Klavans, R., & Boyack, K. W. (2011). Using global mapping to create more accurate document-level maps of research fields. Journal of the American Society for Information Science and Technology, 62(1), 1–18.

    Article  Google Scholar 

  • Lai, K. K., & Wu, S. J. (2005). Using the patent co-citation approach to establish a new patent classification system. Information Processing and Management, 41(2), 313–330.

    Article  Google Scholar 

  • Levitt, J. M., & Thelwall, M. (2008). Is multidisciplinary research more highly cited? A macrolevel study. Journal of the American Society for Information Science and Technology, 59(12), 1973–1984.

    Article  Google Scholar 

  • Leydesdorff, L. (2007). Betweenness centrality as an indicator of the interdisciplinarity of scientific journals. Journal of the American Society for Information Science and Technology, 58(9), 1303–1319.

    Article  Google Scholar 

  • Marshakova, I. V. (1973). System of document connections based on references. Nauchno-Tekhnicheskaya Informatsiya Seriya 2-Informatsionnye Protsessy I Sistemy, 6, 3–8.

  • Moed, H., De Bruin, R., & Van Leeuwen, Th. (1995). New bibliometric tools for the assessment of national research performance: Database description, overview of indicators and first applications. Scientometrics, 33(3), 381–422.

    Article  Google Scholar 

  • NWB Team. (2006). Network Workbench Tool. Indiana University, Northeastern University and University of Michigan. http://nwb.slis.indiana.edu.

  • Palla, G., Derényi, I., Farkas, I., & Vicsek, T. (2005). Uncovering the overlapping community structure of complex networks in nature and society. Nature, 435(7043), 814–818.

    Article  Google Scholar 

  • Palla, G., Barabási, A. L., & Vicsek, T. (2007). Quantifying social group evolution. Nature, 446(7136), 664–667.

    Article  Google Scholar 

  • Porter, A., & Rafols, I. (2009). Is science becoming more interdisciplinary? Measuring and mapping six research fields over time. Scientometrics, 81(3), 719–745.

    Article  Google Scholar 

  • Porter, M. F. (1980). An algorithm for suffix stripping. Program, 14(3), 130–137.

    Article  Google Scholar 

  • Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval. Information Processing & Management, 24(5), 513–523.

    Article  Google Scholar 

  • Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, 74(12), 5463–5467.

    Article  Google Scholar 

  • Sci2 Team. (2009). Science of Science (Sci2) Tool. Indiana University and SciTech Strategies. https://sci2.cns.iu.edu

  • Sinatra, R., Deville, P., Szell, M., Wang, D., & Barabási, A. L. (2015). A century of physics. Nature Physics, 11(10), 791–796.

    Article  Google Scholar 

  • Small, H. (1973). Co-citation in the scientific literature: A new measure of the relationship between two documents. Journal of the American Society for Information Science, 24(4), 265–269.

    Article  Google Scholar 

  • Small, H., & Griffith, B. C. (1974). The structure of scientific literatures I: Identifying and graphing specialties. Science Studies, 4(1), 17–40.

    Article  Google Scholar 

  • Small, H., Sweeney, E., & Greenlee, E. (1985). Clustering the Science Citation Index using co-citations. II. Mapping science. Scientometrics, 8(5), 321–340.

    Article  Google Scholar 

  • Steele, T. W., & Stier, J. C. (2000). The impact of interdisciplinary research in the environmental sciences: A forestry case study. Journal of the American Society for Information Science, 51(5), 476–484.

    Article  Google Scholar 

  • Szántó-Várnagy, Á., Pollner, P., Vicsek, T., & Farkas, I. J. (2014). Scientometrics: Untangling the topics. National Science Review, 1(3), 343–345.

    Article  Google Scholar 

  • Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538.

    Article  Google Scholar 

  • White, H. D., & Griffith, B. C. (1981). Author cocitation: A literature measure of intellectual structure. Journal of the American Society for Information Science, 32(3), 163–171.

    Article  Google Scholar 

  • Wisdom, R., Johnson, R. S., & Moore, C. (1999). c-Jun regulates cell cycle progression and apoptosis by distinct mechanisms. The EMBO Journal, 18(1), 188–197.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Tamás Vicsek, Gergely Palla and Bálint Tóth for discussions and advice. This project was supported by the European Union and the European Social Fund through the FuturICT.hu Project (Grant ID: TAMOP-4.2.2.C-11/1/KONV-2012-0013) and the Hungarian National Science Fund (Grant ID: OTKA K105447).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Pollner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orosz, K., Farkas, I.J. & Pollner, P. Quantifying the changing role of past publications. Scientometrics 108, 829–853 (2016). https://doi.org/10.1007/s11192-016-1971-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-016-1971-9

Keywords

Mathematics Subject Classification

JEL Classification

Navigation