Skip to main content
Log in

Analysis of bibliometric indicators for individual scholars in a large data set

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Citation numbers and other quantities derived from bibliographic databases are becoming standard tools for the assessment of productivity and impact of research activities. Though widely used, still their statistical properties have not been well established so far. This is especially true in the case of bibliometric indicators aimed at the evaluation of individual scholars, because large-scale data sets are typically difficult to be retrieved. Here, we take advantage of a recently introduced large bibliographic data set, Google Scholar Citations, which collects the entire publication record of individual scholars. We analyze the scientific profile of more than 30,000 researchers, and study the relation between the h-index, the number of publications and the number of citations of individual scientists. While the number of publications of a scientist has a rather weak relation with his/her h-index, we find that the h-index of a scientist is strongly correlated with the number of citations that she/he has received so that the number of citations can be effectively be used as a proxy of the h-index. Allowing for the h-index to depend on both the number of citations and the number of publications, we find only a minor improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adler, R., Ewing, J., & Taylor, P. (2009). Citation statistics. Statistical Science, 24(1), 1–14.

    Article  MathSciNet  Google Scholar 

  • Alonso, S., Cabrerizo, F., Herrera-Viedma, E., & F, H. (2009). h-Index: A review focused in its variants, computation and standardization for different scientific fields. Journal of Informetrics, 3(4), 273–289.

    Article  Google Scholar 

  • Bar-Ilan, J. (2008). Which h-index?–a comparison of WOS, Scopus and Google Scholar. Scientometrics, 74(2), 257–271.

    Article  Google Scholar 

  • Bornmann, L., & Daniel, H. D. (2006). Selecting scientific excellence through committee peer review: A citation analysis of publications previously published to approval or rejection of post-doctoral research fellowship applicants. Scientometrics, 68(3), 427–440.

    Article  Google Scholar 

  • Bornmann, L., & Daniel, H. D. (2008). What do citation counts measure? A review of studies on citing behavior. Journal of Documentation, 64(1), 45–80.

    Article  Google Scholar 

  • Bornmann, L., Wallon, G., & Ledin, A. (2008). Does the committee peer review select the best applicants for funding? An investigation of the selection process for two European molecular biology organization programmes. PLoS ONE, 3(10), e3480.

    Article  Google Scholar 

  • Cabanac, G. (2013). Experimenting with the partnership ability \(\varphi\)-index on a million computer scientists. Scientometrics.

  • Costas, R., & Bordons, M. (2007). The h-index: Advantages, limitations and its relation with other bibliometric indicators at the micro level. Journal of Informetrics, 1(3), 193–203.

    Article  Google Scholar 

  • Costas, R., & Bordons, M. (2008). Is g-index better than h-index? An exploratory study at the individual level. Scientometrics, 77(2), 267–288.

    Article  Google Scholar 

  • Davis, P., & Papanek, G. F. (1984). Faculty ratings of major economics departments by citations. The American Economic Review, 74(1), 225–230.

    Google Scholar 

  • De Solla Price, D. J. (1965). Networks of scientific papers. Science, 149(3683), 510–515.

    Google Scholar 

  • Egghe, L. (2006). Theory and practise of the g-index. Scientometrics, 69(1), 131–152.

    Article  MathSciNet  Google Scholar 

  • Egghe, L. (2010). The Hirsch index and related impact measures. Annual Review of Information Science and Technology, 44(1), 65–114.

    Article  Google Scholar 

  • Egghe, L., & Rousseau, R. (2006). An informetric model for the Hirsch-index. Scientometrics, 69(1), 121–129.

    Article  Google Scholar 

  • Garfield, E. (1998). The impact factor and using it correctly. Der Unfallchirurg, 101(6), 413–414.

    Google Scholar 

  • Glänzel, W. (2006). On the h-index: A mathematical approach to a new measure of publication activity and citation impact. Scientometrics, 67(2), 315–321.

    Article  Google Scholar 

  • Hartley, J. (2012). To cite or not to cite: Author self-citations and the impact factor. Scientometrics, 92(2), 313–317.

    Article  Google Scholar 

  • Harzing, A. W. K., & van der Wal, R. (2008). Google Scholar as a new source for citation analysis. Ethics in Science and Environmental Politics, 8(1), 61–73.

    Article  Google Scholar 

  • Hendricks, W. A., & Robey, K. W. (1936). The sampling distribution of the coefficient of variation. The Annals of Mathematical Statistics, 7(3), 129–132.

    Article  Google Scholar 

  • Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences of the United States of America, 102(46), 16,569–16,572.

    Article  Google Scholar 

  • Iglesias, J., & Pecharromán, C. (2007). Scaling the h-index for different scientific ISI fields. Scientometrics, 73(3), 303–320.

    Article  Google Scholar 

  • Jacsó, P. (2005). As we may search—comparison of major features of web of science, scopus and Google Scholar citation-based and citation-enhanced databases. Current Science, 89(9), 1537–1547.

    Google Scholar 

  • Jacsó, P. (2005). Visualizing overlap and rank differences among web-wide search engines. Online Information Review, 29(5), 554–560.

    Article  Google Scholar 

  • Jacsó, P. (2010). Metadata mega mess in Google Scholar. Online Information Review, 34(1), 175–191.

    Article  Google Scholar 

  • Kinney, A. L. (2007). National scientific facilities and their science impact on nonbiomedical research. Proceedings of the National Academy of Sciences of the United States of America, 104(46), 17,943–17,947.

    Article  Google Scholar 

  • Labbé, C. (2011). Ike Antkare, one of the great stars in the scientific firmament. ISSI newsletter, 6(2), 48–52.

    Google Scholar 

  • Laherrère, J., & Sornette, D. (1998). Stretched exponential distributions in nature and economy: “Fat tails” with characteristic scales. European Physical Journal B, 2(4), 525–539.

    Article  Google Scholar 

  • Lehmann, S., Jackson, A. D., & Lautrup, B. E. (2006). Measures for measures. Nature, 444(7122), 1003–1004.

    Article  Google Scholar 

  • MacRoberts, M. H., & MacRoberts, B. R. (1989). Problems of citation analysis: A critical review. Journal of the American Society for Information Science, 40(5), 342–349.

    Article  Google Scholar 

  • MacRoberts, M. H., & MacRoberts, B. R. (1996). Problems of citation analysis. Scientometrics, 36(3), 435–444.

    Article  Google Scholar 

  • Meho, L. I., & Yang, K. (2007). Impact of data sources on citation counts and rankings of lis faculty: Web of science versus Scopus and Google Scholar. Journal of the American Society for Information Science and Technology, 58(13), 2105–2125.

    Article  Google Scholar 

  • Petersen, A. M., Jung, W. s., Yang, J. s., & Stanley, H. E. (2010). Quantitative and empirical demonstration of the Matthew effect in a study of career longevity. Proceedings of the National Academy of Sciences, 108(1), 18–23.

    Article  Google Scholar 

  • Petersen, A. M., Wang, F., & Stanley, H. E. (2010). Methods for measuring the citations and productivity of scientists across time and discipline. Physical Review E, 81(3), 1–9.

    Article  MathSciNet  Google Scholar 

  • Petersen, A. M., Stanley, H. E., & Succi, S. (2011). Statistical regularities in the rank-citation profile of scientists. Scientific reports, 1, 181.

    Article  Google Scholar 

  • Petersen, A. M., Riccaboni, M., Stanley, H. E., & Pammolli, F. (2012). Persistence and uncertainty in the academic career. Proceedings of the National Academy of Sciences, 109(14), 5213–5218.

    Article  Google Scholar 

  • Pratelli, L., Baccini, A., Barabesi, L., & Marcheselli, M. (2012). Statistical analysis of the Hirsch Index. Scandinavian Journal of Statistics, 39(4), 681–694.

    Article  MathSciNet  MATH  Google Scholar 

  • van Raan, A. F. J. (2006). Comparison of the Hirsch-index with standard bibliometric indicators and with peer judgment for 147 chemistry research groups. Scientometrics, 67(3), 491–502.

    Google Scholar 

  • Radicchi, F., & Castellano, C. (2012). A reverse engineering approach to the suppression of citation biases reveals universal properties of citation distributions. PLoS ONE, 7(3), e33,833.

    Article  Google Scholar 

  • Radicchi, F., Fortunato, S., & Castellano, C. (2008). Universality of citation distributions: Toward an objective measure of scientific impact. Proceedings of the National Academy of Sciences of the United States of America, 105(45), 17,268–17,272.

    Article  Google Scholar 

  • Radicchi, F., Fortunato, S., Markines, B., & Vespignani, A. (2009). Diffusion of scientific credits and the ranking of scientists. Physical Review E, 80(5), 056,103.

    Article  Google Scholar 

  • Redner, S. (1998). How popular is your paper? An empirical study of citation distribution. European Physical Journal B, 4(2), 131–134.

    Article  Google Scholar 

  • Redner, S. (2010). On the meaning of the h-index. Journal of Statistical Mechanics (3), L03,005.

  • Rosvall, M., & Bergstrom, C. T. (2008). Maps of random walks on complex networks reveal community structure. Proceedings of the National Academy of Sciences of the United States of America, 105(4), 1118–1123.

    Article  Google Scholar 

  • Schreiber, M., Malesios, C., & S, P. (2011). Categorizing h-index variants. Research Evaluation, 21(3), 397–409.

    Article  Google Scholar 

  • Schubert, A., & Glänzel, W. (2007). A systematic analysis of Hirsch-type indices for journals. Journal of Informetrics, 1(3), 179–184.

    Article  Google Scholar 

  • Spruit H.C. (2012) The relative significance of the H-index. ArXiv e-prints 1201.5476

  • Stringer, M. J., Sales-Pardo, M., & Amaral, L. A. N. (2008). Effectiveness of journal ranking schemes as a tool for locating Information. PLoS ONE, 3(2), e1683.

    Article  Google Scholar 

  • Stringer, M. J., Sales-Pardo, M., & Amaral, L. A. N. (2010). Statistical validation of a global model for the distribution published in a scientific journal. Journal of the American Society for Information Science, 61(7), 1377–1385.

    Article  Google Scholar 

  • Wallace, M. L., Larivière, V., & Gingras, Y. (2008). Modeling a century of citation distributions. Journal of Informetrics, 3(4), 296–303.

    Article  Google Scholar 

  • West, J., Bergstrom, T., Bergstrom, C. T., Road, H. P., & Fe, S. (2010). Big macs and eigenfactor scores : Don’t let correlation coefficients fool you. Journal of the American Society for Information Science, 61(2008), 1800–1807.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Radicchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radicchi, F., Castellano, C. Analysis of bibliometric indicators for individual scholars in a large data set. Scientometrics 97, 627–637 (2013). https://doi.org/10.1007/s11192-013-1027-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-013-1027-3

Keywords

Navigation