Skip to main content
Log in

How accurately does Thomas Kuhn’s model of paradigm change describe the transition from the static view of the universe to the big bang theory in cosmology?

A historical reconstruction and citation analysis

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Up to the 1960s the prevalent view of science was that it was a step-by-step undertaking in slow, piecemeal progression towards truth. Thomas Kuhn argued against this view and claimed that science always follows this pattern: after a phase of “normal” science, a scientific “revolution” occurs. Taking as a case study the transition from the static view of the universe to the Big Bang theory in cosmology, we appraised Kuhn’s theoretical approach by conducting a historical reconstruction and a citation analysis. As the results show, the transition in cosmology can be linked to many different persons, publications, and points in time. The findings indicate that there was not one (short term) scientific revolution in cosmology but instead a paradigm shift that progressed as a slow, piecemeal process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abt, H. A. (1995). Some statistical highlights of the Astrophysical Journal. Astrophysical Journal, 455(2), 407–411.

    Article  Google Scholar 

  • Abt, H. (2000). Do important papers produce high citation counts? Scientometrics, 48(1), 65–70.

    Article  Google Scholar 

  • Alpher, R. A. (1948). Evolution of the universe. Nature, 162, 774–775.

    Article  Google Scholar 

  • Alpher, R. A., Bethe, H., & Gamow, G. (1948). The origin of chemical elements. Physical Review, 73, 803–804.

    Article  Google Scholar 

  • Alpher, R. A., & Herman, R. C. (1949). Remarks on the evolution of the expanding universe. Physical Review, 75, 1089–1095.

    Article  MATH  Google Scholar 

  • Andersen, H., & Evans, J. A. (2009). A cycle of tradition and innovation. Science, 323(5910), 37.

    Article  Google Scholar 

  • Boghossian, P. A. (2006). Fear of knowledge: Against relativism and constructivism. Oxford, UK: Clarendon.

    Google Scholar 

  • Bondi, H., & Gold, T. (1948). The steady-state theory of the expanding universe. Monthly Notices of the Royal Astronomical Society, 108(3), 252–270.

    MATH  Google Scholar 

  • Bornmann, L., & Daniel, H.-D. (2008a). Functional use of frequently and infrequently cited articles in citing publications. A content analysis of citations to articles with low and high citation counts. European Science Editing, 34(2), 35–38.

    Google Scholar 

  • Bornmann, L., & Daniel, H.-D. (2008b). What do citation counts measure? A review of studies on citing behavior. Journal of Documentation, 64(1), 45–80.

    Article  Google Scholar 

  • Bornmann, L., & Daniel, H.-D. (2009). Universality of citation distributions. A validation of Radicchi et al.’s relative indicator c f  = c/c 0 at the micro level using data from chemistry. Journal of the American Society for Information Science and Technology, 60(8), 1664–1670.

    Article  Google Scholar 

  • Cardona, M., & Marx, W. (2008). Max Planck—a conservative revolutionary. Il Nuovo Saggiatore, 24(5–6), 39–54.

    Google Scholar 

  • Charlton, B. G. (2007). Measuring revolutionary biomedical science 1992–2006 using Nobel prizes, Lasker (clinical medicine) awards and Gairdner awards (NLG metric). Medical Hypotheses, 69(1), 1–5.

    Article  Google Scholar 

  • Chen, C., Chen, Y., Horowitz, M., Hou, H., Liu, Z., & Pellegrino, D. (2009). Towards an explanatory and computational theory of scientific discovery. Journal of Informetrics, 3(3), 191–209.

    Article  Google Scholar 

  • Cole, S. (1992). Making science. Between nature and society. Cambridge, MA, USA: Harvard University Press.

    Google Scholar 

  • Crane, D. (1980). An exploratory study of Kuhnian paradigms in theoretical high energy physics. Social Studies of Science, 10(1), 23–54.

    Article  Google Scholar 

  • Davis, P. M. (2009). Reward or persuasion? The battle to define the meaning of a citation. Learned Publishing, 22(1), 5–11.

    Article  Google Scholar 

  • de Sitter, W. (1917). On Einstein’s theory of gravitation, and its astronomical consequences. Monthly Notices of the Royal Astronomical Society, 78(1), 3–28.

    Google Scholar 

  • de Solla Price, D. J. (1965). Little science, big science. New York, NY, USA: Columbia University Press.

    Google Scholar 

  • Dewitt, T. W., Nicholson, R. S., & Wilson, M. K. (1980). Science citation index and chemistry. Scientometrics, 2(4), 265–275.

    Article  Google Scholar 

  • Dicke, R. H., Peebles, P. J. E., Roll, P. G., & Wilkinson, D. T. (1965). Cosmic black-body radiation. Astrophysical Journal, 142(1), 414–419.

    Article  Google Scholar 

  • Einstein, A. (1905a). Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt [Generation and conversion of light with regard to a heuristic point of view]. Annalen der Physik, 17(6), 132–148.

    Article  Google Scholar 

  • Einstein, A. (1905b). Zur Elektrodynamik bewegter Körper [On the electrodynamics of moving bodies]. Annalen der Physik, 17(5), 891–921.

    Article  MathSciNet  Google Scholar 

  • Einstein, A. (1915). Über die allgemeine Relativitätstheorie (plus addendum). Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie. Die Feldgleichungen der Gravitation [On the general theory of relativity (addendum). Explanation of the perihelion motion of Mercury from the general theory of relativity. The field equations of gravitation]. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, Part 2, 778–847.

  • Einstein, A. (1916). Die Grundlage der allgemeinen Relativitätstheorie [The foundation of the general theory of relativity]. Annalen der Physik, 49(7), 769–822.

    Article  Google Scholar 

  • Einstein, A. (1917). Kosmologische Betrachtungen zur Allgemeinen Relativitätstheorie [Cosmological considerations on the general theory of relativity]. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, Part, 1, 142–152.

    Google Scholar 

  • Feist, G. J. (2006). The psychology of science and the origins of the scientific mind. New Haven, CT, USA: Yale University Press.

    Google Scholar 

  • Friedmann, A. (1922). Über die Krümmung des Raumes [On the curvature of space]. Zeitschrift für Physik, 10, 377–386.

    Article  Google Scholar 

  • Friedmann, A. (1924). Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes [On the possibility of a world with constant negative curvature]. Zeitschrift für Physik, 21, 326–332.

    Article  MathSciNet  Google Scholar 

  • Garfield, E., Sher, I. H., & Torpie, R. J. (1964). The use of citation data in writing the history of science. Philadelphia, PA, USA: Institute for Scientific Information.

    Google Scholar 

  • Giere, R. N. (2006). Scientific perspectivism. Chicago, IL, USA: University of Chicago Press.

    Google Scholar 

  • Gieryn, T. F. (1995). Boundaries of science. In S. Jasanoff, G. E. Markle, J. C. Petersen, & T. Pinch (Eds.), Handbook of science and technology studies (pp. 393–443). London, UK: Sage.

    Google Scholar 

  • Guth, A. H. (1981). Inflationary universe: A possible solution to the horizon and flatness problems. Physical Review D, 23(2), 347–356.

    Article  MathSciNet  Google Scholar 

  • Hentschel, K. (2005a). Einstein und die Lichtquantenhypothese – Die stufenweise Anreicherung der Bedeutungsschichten von “Lichtquanten” (Teil I) [Einstein and the light quantum hypothesis – The stepwise enrichment of layers of meaning of the concept “light quanta” (Part I)]. Naturwissenschaftliche Rundschau, 58(6), 311–319.

    Google Scholar 

  • Hentschel, K. (2005b). Einstein und die Lichtquantenhypothese – Die stufenweise Anreicherung der Bedeutungsschichten von “Lichtquanten” (Teil II) [Einstein and the light quantum hypothesis – The stepwise enrichment of layers of meaning of the concept “light quanta” (Part II)]. Naturwissenschaftliche Rundschau, 58(7), 363–371.

    Google Scholar 

  • Hentschel, K. (2006). Light quanta: The maturing of a concept by the stepwise accretion of meaning. Physics & Philosophy, 1, Paper No. 6.

  • Hertzsprung, E. (1913). Über die räumliche Verteilung der Veränderlichen vom delta Cephei-Typus. Astronomische Nachrichten, 196, 201–208.

    Google Scholar 

  • Hoyle, F. (1948). A new model for the expanding universe. Monthly Notices of the Royal Astronomical Society, 108(5), 372–382.

    MATH  Google Scholar 

  • Hoyle, F. (1949). On the cosmological problem. Monthly Notices of the Royal Astronomical Society, 109(3), 365–371.

    MATH  Google Scholar 

  • Hubble, E. (1925). NGC 6822, a remote stellar system. Astrophysical Journal, 62, 409–433.

    Article  Google Scholar 

  • Hubble, E. (1926). Extra-galactic nebulae. Astrophysical Journal, 64, 321–369.

    Article  Google Scholar 

  • Hubble, E. (1929). A relation between distance and radial velocity among extra-galactic nebulae. Proceedings of the National Academy of Sciences of the USA, 15, 168–173.

    Article  MATH  Google Scholar 

  • Hubble, E., & Humason, M. (1931). The velocity-distance relation of extra-galactic nebulae. Astrophysical Journal, 74, 43–80.

    Article  Google Scholar 

  • Jansky, K. (1933). Radio waves from outside the solar system. Nature, 132, 66.

    Article  Google Scholar 

  • Kuhn, T. S. (1962a). Historical structure of scientific discovery. Science, 136(3518), 760–764.

    Article  Google Scholar 

  • Kuhn, T. S. (1962b). The structure of scientific revolutions. Chicago, IL, USA: University of Chicago Press.

    Google Scholar 

  • Kuukkanen, J.-M. (2007). Kuhn, the correspondence theory of truth and coherentist epistemology. Studies in History and Philosophy of Science Part A, 38(3), 555–566.

    Article  Google Scholar 

  • Leavitt, H. S. (1912). Periods of 25 variable stars in the small Magellanic cloud. Harvard College Observatory Circular, 173, 1–3.

    Google Scholar 

  • Lemaitre, G. (1927). Un univers homogene de masse constante et de rayon croissant, rendant compte de la vitesse radiale des nebuleuses extra-galactiques [A homogeneous universe of constant mass and increasing radius]. Annales Societe Sciences Bruxelle, A47, 49–59.

    Google Scholar 

  • Lemaitre, G. (1931). The beginning of the world from the point of view of quantum theory. Nature, 127, 706.

    Article  Google Scholar 

  • Lokker, C., McKibbon, K. A., McKinlay, R. J., Wilczynski, N. L., & Haynes, R. B. (2008). Prediction of citation counts for clinical articles at two years using data available within three weeks of publication: Retrospective cohort study. British Medical Journal, 336(7645), 655–657.

    Article  Google Scholar 

  • Lucio-Arias, D., & Leydesdorff, L. (2009). The dynamics of exchanges and references among scientific texts, and the autopoiesis of discursive knowledge. Journal of Informetrics, 3.

  • Lundmark, K. (1924). The determination of the curvature of space-time in de Sitter’s world. Monthly Notes of the Royal Astronomical Society, 84, 747–770.

    Google Scholar 

  • Marris, E., Pearson, H., Waldrop, M., Hayden, E. C., Schiermeier, Q., Baker, M., et al. (2008). Language: Disputed definitions [News Feature]. Nature, 455, 1023–1028.

    Article  Google Scholar 

  • Marx, W., & Cardona, M. (2009). The citation impact outside references—formal versus informal citations. Scientometrics, 80(1), 1–21.

    Article  Google Scholar 

  • Masterman, M. (1970). The nature of a paradigm. In I. Lakatos & A. Musgrave (Eds.), Criticism and the growth of knowledge. Proceedings of the international colloquium in the philosophy of Science, London, 1965 (Vol. 4, pp. 59–89). Cambridge, UK: Cambridge University Press.

  • Mayoral de Lucas, J. V. (2009). Intensions, belief and science: Kuhn’s early philosophical outlook (1940–1945). Studies in History and Philosophy of Science Part A, 40(2), 175–184.

    Article  Google Scholar 

  • Merton, R. K. (1957). Priorities in scientific discovery: A chapter in the sociology of science. American Sociological Review, 22(6), 635–659.

    Article  Google Scholar 

  • Merton, R. K. (1965). On the shoulders of giants: A Shandean postscript. New York, NY: Free Press.

  • Merton, R. K. (1968). Social theory and social structure. New York, NY, USA: Free Press.

    Google Scholar 

  • Moravcsik, M. J., & Murugesan, P. (1979). Citation patterns in scientific revolutions. Scientometrics, 1(2), 161–169.

    Article  Google Scholar 

  • Morris, S. A. (2005). Manifestation of emerging specialties in journal literature: A growth model of papers, references, exemplars, bibliographic coupling, cocitation, and clustering coefficient distribution. Journal of the American Society for Information Science and Technology, 56(12), 1250–1273.

    Article  Google Scholar 

  • Nussbaumer, H., & Bieri, L. (2009). Discovering the expanding universe. Cambridge, MA, USA: Cambridge University Press.

    Google Scholar 

  • Penzias, A. A., & Wilson, R. W. (1965). A measurement of excess antenna temperature at 4080MC/S. Astrophysical Journal, 142(1), 419.

    Article  Google Scholar 

  • Priester, W., & Schaaf, R. (1987). Carl Wirtz und die Flucht der Spiralnebel [Carl Wirtz and the escape of the spiral nebulae]. Sterne und Weltraum, 7–8, 376–377.

    Google Scholar 

  • Radicchi, F., Fortunato, S., & Castellano, C. (2008). Universality of citation distributions: Toward an objective measure of scientific impact. Proceedings of the National Academy of Sciences, 105(45), 17268–17272.

    Article  Google Scholar 

  • Ryle, M., & Clarke, R. W. (1961). An examination of the steady-state model in the light of some recent observations of radio sources. Monthly Notices of the Royal Astronomical Society, 122(4), 349–362.

    Google Scholar 

  • Shimp, C. P. (2004). Scientific peer review: A case study from local and global analyses. Journal of the Experimental Analysis of Behavior, 82(1), 103–116.

    Article  Google Scholar 

  • Silk, J. (1980). The big bang – the creation and evolution of the universe. San Francisco, CA. USA: W.H. Freeman and Company.

    Google Scholar 

  • Singh, S. (2004). Big Bang: The most important scientific discovery of all time and why you need to know about it. New York, NY, USA: Fourth Estate Ltd.

    Google Scholar 

  • Slipher, V. M. (1912). The radial velocity of the Andromeda Nebula. Lowell Observatory Bulletin, 58, 56–57.

    Google Scholar 

  • Slipher, V. M. (1917). Nebulae. Proceedings of the American Philosophical Society, 56, 403–409.

    Google Scholar 

  • Smith, L. C. (1981). Citation analysis. Library Trends, 30(1), 83–106.

    Google Scholar 

  • Smoot, G. F., Bennett, C. L., Kogut, A., Wright, E. L., Aymon, J., Boggess, N. W., et al. (1992). Structure in the COBE differential microwave radiometer first-year maps. Astrophysical Journal, 396(1), L1–L6.

    Article  Google Scholar 

  • Tabah, A. N. (1999). Literature dynamics: Studies on growth, diffusion, and epidemics. Annual Review of Information Science and Technology, 34, 249–286.

    Google Scholar 

  • van Raan, A. F. J. (2005). Measurement of central aspects of scientific research: Performance, interdisciplinarity, structure. Measurement, 3(1), 1–19.

    Google Scholar 

  • Wirtz, C. (1921). Einiges zur Statistik der Radialbewegungen von Spiralnebeln und Kugelsternhaufen [On the statistics of the radial motions of spiral nebulae and globular star clusters]. Astronomische Nachrichten, 215, 350–354.

    Article  Google Scholar 

  • Wirtz, C. (1924). De Sitters Kosmologie und die Radialbewegungen der Spiralnebel [De Sitter’s cosmology and the radial motions of the spiral nebulae]. Astronomische Nachrichten, 222, 22–26.

    Google Scholar 

  • Wright, E. L., Meyer, S. S., Bennett, C. L., Boggess, N. W., Cheng, E. S., Hauser, M. G., et al. (1992). Interpretation of the cosmic microwave background radiation anisotropy detected by the COBE differential microwave radiometer. Astrophysical Journal, 396(1), L13–L18.

    Article  Google Scholar 

  • Ziman, J. (2000). Real science. What it is, and what it means. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude to the reviewer for his helpful comments. We thank Armin Burkhardt, Karl Syassen (both Max Planck Institute for Solid State Research, Stuttgart, Germany), Hermann Nicolai, Stefan Theisen (both Max Planck Institute for Gravitational Physics, Golm, Germany), and Klaus Hentschel (University of Stuttgart) for careful and critical reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Bornmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marx, W., Bornmann, L. How accurately does Thomas Kuhn’s model of paradigm change describe the transition from the static view of the universe to the big bang theory in cosmology?. Scientometrics 84, 441–464 (2010). https://doi.org/10.1007/s11192-009-0107-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-009-0107-x

Keywords

Navigation