Skip to main content
Log in

Flavones in genetically transformed Scutellaria baicalensis roots and induction of their synthesis by elicitation with methyl jasmonate

  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The composition and content of flavones were estimated in pRi T-DNA-transformed skullcap (Scutellaria baicalensis Georgi) roots obtained by the inoculation of axenically grown seedlings with a wild A4 strain of the soil bacterium Agrobacterium rhizogenes. It was elucidated by analytical and preparative HPLC of phenolic compounds in the extracts from the pRi T-DNA-transformed roots and also by ultraviolet spectroscopy and 1H and 13C NMR that cultured skullcap roots contained similar basic flavones as intact roots of this plant species, i.e., baicalein and wogonin and corresponding glucuronides, baicalin and wogonoside. The content of these flavones in cultured roots was threefold lower than in the roots of intact five-year-old plants. When skullcap roots were cultured on B5 or Murashige and Skoog medium, the ratios between major flavones changed but their total content remained unchanged. The treatment of three-week-old cultured roots with methyl ether of jasmonic acid (MeJa) doubled the total concentration of major flavones in roots; the content of aglycons, baicalein and wogonin, increased to a greater degree, e.g., by 2.3 and 3.3 times, respectively. The induction of flavone production by elicitors indicates that flavones behave as phytoanticipins because major flavones of skullcap manifest a distinct antimicrobial activity. The results of the short-term treatment of skullcap roots with MeJa show that stress biotic factors can considerably increase the content of physiologically active flavones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DMSO:

dimethyl sulfoxide

EA:

ethyl acetate

MeJa:

methyl jasmonate

MS:

Murashige and Skoog nutrient medium

TFA:

trifluoroacetic acid

UV:

ultraviolet

REFERENCES

  1. D. Tepfer (1983) Biology of Genetical Transformation of Plant with Agrobacterium rhizogenes A. Pühler (Eds) Molecular Genetics of the Bacteria-Plant Interaction Springer-Verlag Berlin 272–293

    Google Scholar 

  2. M.C. Christey (2001) ArticleTitleInvited Review: Use of Ri-Mediated Transformation for Production of Transgenic Plants In Vitro Cell Dev. Biol. Plant. 37 687–700

    Google Scholar 

  3. H. Wysokinska A. Chimel (1997) ArticleTitleTransformed Root Cultures for Biotechnology Acta Biotechnol. 17 131–159

    Google Scholar 

  4. A. Giri M.L. Narasu (2001) ArticleTitleTransgenic Hairy Roots: Recent Trend and Applications Biotech. Adv. 18 1–22

    Google Scholar 

  5. A.M. Smirnov (1970) Rost i metabolizm izolirovannykh kornei v steril’noi kul’ture Nauka Moscow

    Google Scholar 

  6. N. Joshee T.S. Patrick R.S. Mentreddy A.K. Yadav (2002) Skullcap: Potential Medicinal Crop J. Janick A. Whipkey (Eds) Trends in New Crops and New Uses ASHS Press Alexandria 580–586

    Google Scholar 

  7. I.N. Kuzovkina A.V. Guseva I.E. Al’terman R.A. Karnachuk (2001) ArticleTitleFlavonoid Production in Transformed Scutellaria baicalensis Roots and Ways of Its Regulation Fiziol. Rast. 48 523–528

    Google Scholar 

  8. O.L. Gamborg R.A. Miller K. Ojima (1968) ArticleTitleNutrient Requirements of Suspension Cultures of Soybean Root Cells Exp. Cell Res. 50 151–158

    Google Scholar 

  9. T. Murashige F. Skoog (1962) ArticleTitleA Revised Medium for Rapid Growth and Bioassay with Tobacco Tissue Physiol. Plant. 15 473–479

    Google Scholar 

  10. Y. Miyaichi Y. Imoto T. Tomimori C.-C. Lin (1987) ArticleTitleStudies on the Constituents of Scutellaria Species: 9. On the Flavonoid Constituents of the Root of Scutellaria indica L. Chem. Pharm. Bull. 35 3720–3725

    Google Scholar 

  11. T. Horie Y. Ohtsuru K. Shibata K. Yamashita M. Tsukayama Y. Kamamura (1998) ArticleTitle 13C NMR Spectral Assignment of the A-Ring of Polyoxygenated Flavones Phytochemistry 47 865–874

    Google Scholar 

  12. D. Wozniak E. Lamer-Zagawska A. Matkowski (2004) ArticleTitleAntimutagenic and Antiradical Properties of Flavones from the Roots of Scutellaria baicalensis Georgi Nährung. 48 9–12

    Google Scholar 

  13. S. Maki N. Tadashu M. Yoshizumi M. Masataka (2004) ArticleTitleCytotoxic Activities of Flavonoinds from Two Scutellaria Plants in Chinese Medicine J. Ethnopharmacol. 91 65–68

    Google Scholar 

  14. Y. Zhou M. Hirotani T. Furuya (1997) ArticleTitleFlavonoids and Phenylethanoids from Hairy Root Culture of Scutellaria baicalensis Phytochemistry 44 83–87 Occurrence Handle10.1016/S0031-9422(96)00443-8 Occurrence Handle1:CAS:528:DyaK2sXhsVWjsg%3D%3D

    Article  CAS  Google Scholar 

  15. K. Nishikawa K. Ishimaru (1997) ArticleTitleFlavonoids in Root Cultures of Scutellaria baicalensis J. Plant Physiol. 151 633–636

    Google Scholar 

  16. K. Nishikawa H. Furukawa F. Toshihiro H. Fujii K. Mihashi K. Shimomura K. Isjimaru (1999) ArticleTitleFlavone Production in Transformed Root Cultures of Scutellaria baicalensis Georgi Phytochemistry 52 885–890 Occurrence Handle10.1016/S0031-9422(99)00306-4 Occurrence Handle1:CAS:528:DC%2BD3cXhtFCjtA%3D%3D

    Article  CAS  Google Scholar 

  17. M. Hirotani (1999) Genetical Transformation of Scutellaria baicalensis, Biotechnology in Agriculture and Foresty Y.P.S. Bajaj (Eds) Transgenic Medicinal Plants Springer-Verlag Berlin 272–283

    Google Scholar 

  18. A. Stojakowska J. Malarz (2000) ArticleTitleFlavonoid Production in Transformed Root Cultures of Scutellaria baicalensis J. Plant Physiol. 156 121–125

    Google Scholar 

  19. Gy. Kovács I.N. Kuzovkina É. Szöke L. Kursinzki (2004) ArticleTitleHPLC Determination of Flavonoids in Hairy-Root Cultures of Scutellaria baicalensis Georgi Chromatographia 60 81–85

    Google Scholar 

  20. H.D. Etten ParticleVan J.W. Mansfield J.A. Bailey E.E. Farmer (1994) ArticleTitleTwo Classes of Plant Antibiotics: Phytoalexins versus Phytoanticipins Plant Cell 6 1191–1192

    Google Scholar 

  21. S. Morimoto N. Tateishi T. Matsuda H. Tanaka F. Taura N. Furuya N. Matsuyama Y. Shoyama (1998) ArticleTitleNovel Hydrogen Peroxide Metabolism in Suspension Culture of Scutellaria baicalensis Georgi J. Biol. Chem. 273 12606–12611

    Google Scholar 

  22. H.C. Huang H.R. Wang L.M. Hsieh (1994) ArticleTitleAntiproliferative Effect of Baicalein, a Flavonoid from a Chinese Herb, on Vascular Smooth Muscle Cell Eur. J. Pharmacol. 251 91–93

    Google Scholar 

  23. Y.S. Chi H. Lim H. Park H.P. Kim (2003) ArticleTitleEffect of Wogonin, a Plant Flavone from Scutellaria baicalensis Radix, on Skin Inflammation: In Vivo Regulation of Inflammation-Associated Gene Expression Biochem. Pharmacol. 66 1271–1278

    Google Scholar 

  24. D.Y. Zang J. Wu F. Ye L. Xue S. Jiang J. Yi W. Zhang H. Wei M. Sung W. Wang X. Li (2003) ArticleTitleInhibition of Cancer Cell Proliferation and Prostaglandin E2 Synthesis by Scutellaria baicalensis Cancer Res. 63 4037–4043

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Fiziologiya Rastenii, Vol. 52, No. 1, 2005, pp. 90–96.

Original Russian Text Copyright © 2005 by Kuzovkina, Guseva, Kovács, Szöke, Vdovitchenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuzovkina, I.N., Guseva, A.V., Kovács, D. et al. Flavones in genetically transformed Scutellaria baicalensis roots and induction of their synthesis by elicitation with methyl jasmonate. Russ J Plant Physiol 52, 77–82 (2005). https://doi.org/10.1007/s11183-005-0012-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11183-005-0012-y

Key words

Navigation