Skip to main content

Advertisement

Log in

Formation of Microstructure and Mechanical Characteristics in Electron Beam Additive Manufacturing of Aluminum Bronze with an In-Situ Adjustment of the Heat Input

  • Published:
Russian Physics Journal Aims and scope

Microstructure and mechanical characteristics of aluminum bronze fabricated using electron beam additive manufacturing (EBAM) under adjusting the heat input as a function of the sample’s height are investigated. It is shown that this adjustment has an effect on the dendrite grain size, morphology and mechanical characteristics. Columnar high aspect ratio grains are formed during deposition at the maximum heat input values. The columnar grain width in the section parallel to the deposition direction is increasing in the EBAM conducted at a lower heat input. The tensile static tests show that the tensile strength values are improving from 435 to 483 MPa. A moderate degree of anisotropy is revealed between the samples oriented by their tensile axes parallel and perpendicular to the deposition direction. The samples with tensile axes parallel to the deposition direction show higher tensile strength and lower plasticity than those of the samples with perpendicular orientations of their tensile axes. Furthermore, the heat input adjustment has no effect on the mean width of the columnar grains measured in a section perpendicular to the deposition direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Meigh, Cast and Wrought Aluminium Bronzes: Properties, Processes and Structure, CRC Press (2018).

    Book  Google Scholar 

  2. H. Harish and V. Manish, Tribology International, 42, Iss. 2, 378 (2009).

  3. S. Zhu, J. Ma, H. Tan, et al., Tribology International, 131, 158 (2019).

    Article  Google Scholar 

  4. R. Gheisari and A. A. Polycarpou, Tribology International, 148, Art. 106339 (2020).

  5. R. A. Poggie, J. J. Wert, and L. A. Harris, J. Adhesion Sci. Technol., 8, Iss. 1, 11 (1994).

    Article  Google Scholar 

  6. S. I. Shakil, C. Dharmendra, S. B. Amirkhiz, et al., Mater. Sci. Eng. A, 792, Art. 139773 (2020).

  7. B. Li, C. Han, C. W. J. Lim, and K. Zhou, Mater. Sci. Eng. A, 829, Art. 142101 (2020).

  8. C. Dharmendra, A. Hadadzadeh, B. S. Amirkhiz, et al., Additive Manufacturing, 30, Art. 100872 (2019).

  9. T. Wolf, Z. Fu, and C. Körner, Mater. Lett., 238, 241 (2019).

    Article  Google Scholar 

  10. E. S. Khoroshko, A. V. Filippov, S.Yu. Tarasov, et al., Obrabotka metallov: tekhnologiya, oborudovanie, instrument (Metal Working and Material Science), 22, No. 2, 118 (2020).

  11. E. G. Astafurova, S. V. Astafurov, K. A. Reunova, et al., Phys. Mesomech., 25(1), 1 (2022).

    Article  Google Scholar 

  12. Y. D. Shchitsyn, E. A. Krivonosova, S. D. Neulybin, et al., Phys. Mesomech., 24, 716 (2021).

    Article  Google Scholar 

  13. M. G. Krinitsyn, Yu. V. Donstov and V. A. Yurkina, Russ. Phys. J., 64, No. 6, 1086 (2021).

    Article  Google Scholar 

  14. I. Richardson, Guide to Nickel Aluminium Bronze for Engineers, Copper Development Association (2016).

    Google Scholar 

  15. C. Dharmendra, K. P. Rice, B. S. Amirkhiz, and M. Mohammadi, Mater. Design, 202, Art. 109541 (2021).

  16. S. Nair, R. Sellamuthu, and R. Saravanan, Mater. Today Proc., 5, No. 2, Part 2, 6617 (2018).

  17. X. P. Tao, S. Zhang, C. H. Zhang, et al., Surf. Coat. Technol., 342, 76 (2018).

    Article  Google Scholar 

  18. K. Oh-Ishi and T. R. McNelley, Metallurg. Mater. Trans. A, 35, 2951 (2004).

    Article  ADS  Google Scholar 

  19. Rizi M. Saboktakin and Kokabi A. Hossein, J. Mater. Proc. Technol., 214, No. 8, 1524 (2014).

    Article  Google Scholar 

  20. A. Jahanafrooz, F. Hasan, G. W. Lorimer, and N. Ridley, Mater. Trans. A, 14, No. 10, 1951 (1983).

    Article  Google Scholar 

  21. K. N. Kalashnikov, A. V. Chumaevskii, T. A. Kalashnikova, et al., Russ. Phys. J., 63, No. 6, 962(2020).

    Article  Google Scholar 

  22. S.Yu. Tarasov, A. V. Filippov, N. L. Savchenko, et al., Int. J. Adv. Manufactur. Technol., 99, 2353 (2018).

    Article  Google Scholar 

  23. D. A. Gurianov, S. V. Fortuna, S. Yu. Nikonov, et al., Russ. Phys. J., 64, No. 8, 1415 (2021).

    Article  Google Scholar 

  24. A. Filippov, N. Shamarin, E. Moskvichev, et al., Materials, 14(22), Art. 6948 (2021).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Zykova.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 45–51, May, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zykova, A.P., Panfilov, A.O., Chumaevskii, A.V. et al. Formation of Microstructure and Mechanical Characteristics in Electron Beam Additive Manufacturing of Aluminum Bronze with an In-Situ Adjustment of the Heat Input. Russ Phys J 65, 811–817 (2022). https://doi.org/10.1007/s11182-022-02701-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-022-02701-6

Keywords

Navigation