Skip to main content
Log in

Separation of Hydrogen Isotopes Using Bilayer Membranes

  • Published:
Russian Physics Journal Aims and scope

The quantum sieving mechanism through the bilayer membranes calculated for hydrogen isotopes is described. A technique for the determining the potential energy of interaction of a monoatomic membrane with atoms and molecules is presented. The probability density of the distribution of molecules when passing through the membrane is obtained by the matrix method of solving the differential Schrödinger equation. It consists of using the linking technology at the boundaries of the calculated interval. The permeability of a bilayer graphdiyne membrane for hydrogen isotopes H2, D2, T2, and HD is considered. The resonant regimes of the component passage are found and the conditions favorable for the separation of individual components from the mixture are determined. As a result, it has been shown that composite membranes are effective for separation of isotopes in the gas state at cryogenic temperatures

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Gijón, J. Campos-Martínez, and M. I. Hernández, J. Phys. Chem. C, 121, 19751–19757 (2017). https://doi.org/10.1021/acs.jpcc.7b04298.

    Article  Google Scholar 

  2. J. Schrier, J. Phys. Chem. Lett., 1, 2284–2287 (2010). https://doi.org/10.1021/jz100748x.

    Article  Google Scholar 

  3. V. A. Poteryaeva, M. A. Bubenchikov, A. M. Bubenchikov, and A. V. Lun-Fu, Sci. Rep., 10, No 1, 15631 (2020). https://doi.org/10.1038/s41598-020-72327-6.

    Article  ADS  Google Scholar 

  4. V. A. Poteryaeva, Vestn. TGU. Matemat. Mekhan., No. 65, 114–123 (2020). 10.17223/19988621/65/9.

  5. S. Mandrà, J. Schrier, and M. Ceotto, J. Phys. Chem. A, 118, 6457–6465 (2014). https://doi.org/10.1021/jp502548r.

    Article  Google Scholar 

  6. V. A. Poteryaeva, M. A. Bubenchikov, S. Jambaa, et al., J. Phys.: Conf. Ser., 1537, No. 012008 (2019). 10.1088/1742-6596/1537/1/012008.

  7. Z. Jin, W. Lu, K. J. O’Neill, et al., Chem. Mat., 23, No. 4, 923–925 (2011). https://doi.org/10.1021/cm1025188.

    Article  Google Scholar 

  8. Q. Huang, X. Chen, J. Lin, et al, J. Phys. Chem. C, 115, No. 42, 20538–20545 (2011). https://doi.org/10.1021/jp204723k.

    Article  Google Scholar 

  9. A. W. Hauser and P. Schwerdtfeger, J. Phys. Chem. Lett., 3, 209–213 (2012). https://doi.org/10.1021/jz201504k.

    Article  Google Scholar 

  10. F. Li, Y. Qu, and M. Zhao, Carbon, 95, 51–57 (2015). https://doi.org/10.1016/j.carbon.2015.08.013.

    Article  Google Scholar 

  11. Y. Qu, Sci. Rep., 6, No. 19952 (2016). 10.1038/srep19952.

  12. G. Li, Y. Li, H. Liu, et al., Chem. Commun., 46, No. 19, 3256 (2010). https://doi.org/10.1039/b922733d.

    Article  ADS  Google Scholar 

  13. X. Gao, H. Liu, D. Wang, and J. Zhang, Chem. Soc. Rev., 48, 908–936 (2019). https://doi.org/10.1039/c8cs00773j.

    Article  Google Scholar 

  14. M. Bartolomei, E. Carmona-Novillo, M. I. Hernández, et al., J. Phys. Chem. C, 118, No. 51, 29966–29972 (2014). https://doi.org/10.1021/jp510124e.

    Article  Google Scholar 

  15. A. M. Bubenchikov, M. A. Bubenchikov, A. I. Potekaev, et al., Russ. Phys. J., 58, No. 7, 882–888 (2015).

    Article  Google Scholar 

  16. V. A. Poteryaeva, M. A. Bubenchikov, and A. Lun-Fu, AIP Conf. Proc., 2212, No. 020048 (2020). https://doi.org/10.1063/5.0000939.

  17. J. Perez-Carbajo, J. B. Parra, C. O. Ania, et al., ACS Appl. Mater. Interfac., 11, No. 20, 18833–18840 (2019). https://doi.org/10.1021/acsami.9b02736.

    Article  Google Scholar 

  18. S. Niimura, T. Fujimori, D. Minami, et al., J. Am. Chem. Soc., 134, No. 45, 18483–18486 (2012). https://doi.org/10.1021/ja305809u.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Poteryaeva.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 74–78, May, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poteryaeva, V.A., Bubenchikov, M.A. Separation of Hydrogen Isotopes Using Bilayer Membranes. Russ Phys J 64, 844–849 (2021). https://doi.org/10.1007/s11182-021-02402-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02402-6

Keywords

Navigation