Skip to main content
Log in

Temperature Dependence of Thermal Conductivity and Physical Properties of Combustion Synthesis of Intermetallic Compound

  • Published:
Russian Physics Journal Aims and scope

The paper proposes a two-dimensional mathematical model of the combustion synthesis of chemical compounds and alloys in the conditions of thermal explosion during the induction heating of the powder compact in a steel cylindrical mold. A set of chemical reactions is described by a reaction network with effective kinetic parameters. The kinetic aspect concerns the possible strong retardation of the reaction network with the accumulation of the synthesis product. The proposed model allows investigating macroscopic physical processes during the synthesis of the intermetallic compound in changing the heating rate and reactor dimensions. A comparative analysis is given to the constant thermal conductivity and thermal conductivity affected by temperature. Consideration of the temperature dependence of thermal conductivity in the proposed model, can lead to a quantitative change in the delay time of combustion and a qualitative change in the temperature distribution in the cylindrical mold volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. D. Grapes, M. K. Santala, G. H. Campbell, et al., Thermochim. Acta, 658, 72–83 (2017).

    Article  Google Scholar 

  2. A. Maznoy, A. Kirdyashkin, V. Kitler, and A. Solovyev, J. Alloys Compd., No. 697, 114–123 (2017).

  3. P. V. Trusov, A. N. Shveikin, N. S. Kondrat’ev, and A. Yu. Yants, Fiz. Mezomekh., 23, No. 6, 33–62 (2020).

    Google Scholar 

  4. O. B. Kovalev and V. M. Fomin, J. Appl. Mech. Tech. Ph., 38, No. 1, 52–57 (1997).

    Article  ADS  Google Scholar 

  5. O. V. Lapshin and V. E. Ovcharenko, Combust. Explo. Shock, 32, No. 3, 299–305 (1996).

    Article  Google Scholar 

  6. V. N. Leitsin, V. A. Skripnyak, and M. A. Dmitrieva, in: Proc. Int. Sci. Conf. RDAMM, vol. 6, Pt 2, (2001), pp. 261–265.

  7. A. G. Merzhanov, Fizicheskaya khimiya, 3, No. 44, 6–45 (1983).

    Google Scholar 

  8. V. Yu. Filimonov and V. G. Prokof’ev, Combust. Flame, 223, 88–97 (2021).

    Article  Google Scholar 

  9. V. V. Barzykin, V. T. Gontkovskaya, A. G. Merzhanov, et al., PMTF., No. 3, 118–125 (1964).

  10. A. G. Merzhanov and A.G. Strunina, Nauchno-tekhnicheskie problemy goreniya i vzryva, No. 1 (1965).

  11. A. G. Strunina, A. G. Merzhanov and Z. B. Maiofis, Fiz. Goreniya Vzryva, No. 2, 108–114 (1965).

  12. A. G. Strunina, V. T. Gontkovskaya and A. G. Merzhanov, Fiz. Goreniya Vzryva, No. 3, 36–40 (1965).

  13. A. G. Knyazeva and N. Travitskii, Russ. Phys. J., 62, No. 8, 1495–1503 (2019).

    Article  Google Scholar 

  14. V. V. Barzykin, Tekhnika mashinostroeniya, No. 1, 44–52 (2003).

  15. D. N. Kuz’menko, A. I. Ustinov, S. G. Kosintsev, and L. V. Petrushinets, Avtomaticheskaya svarka, No. 10, 24–27 (2014).

  16. A. S. Rogachev, A. E. Grigoryan, E. V. Illarionova, et al., Combust. Explo. Shock, 40, No. 2, 166–171 (2004).

    Article  Google Scholar 

  17. O. B. Kovalev and V. M. Fomin, J. Appl. Mech. Tech. Ph., 38, No. 1, 52–57 (1997).

    Article  ADS  Google Scholar 

  18. A. F. Lisovskii, Fizich. Mezomekh., 14, No. 4, 11–16 (2011).

    Google Scholar 

  19. V. E. Ovcharenko, E. N. Boyangin, A. Pshenichnikov, and T. A. Krilova, Mater. Sci. Forum. Mater. and Proc. Technol., 906, 95–100 (2017).

    Article  Google Scholar 

  20. N. V. Bukrina and A. G. Knyazeva, High Temp. Mater. Process., 24, No. 1, 65–79 (2020).

    Article  Google Scholar 

  21. N. V. Bukrina, A. G. Knyazeva, and V. E. Ovcharenko, in: Proc. 3rd All-Russian Seminar “Interdisciplinary Problems of Additive Manufacturing,” Tomsk, (2018), pp. 3–9.

  22. A. G. Merzhanov, Gasless Combustion Theory [in Russian], Preprint, Chernogolovka, (1973).

    Google Scholar 

  23. N. V. Bukrina and A. G. Knyazeva, Russ. Phys. J., 63, No. 7, 1163–1170 (2020).

    Article  Google Scholar 

  24. I. S. Grigor’ev and E. Z. Meilikhov, Physical Quantities. Handbook [in Russian], Energoatomizdat, Moscow (1991).

  25. G. Tichá, W. Pabst, and D. S. Smith, J. Mater. Sci., 40, No. 18, 5045–5047 (2005).

    Article  ADS  Google Scholar 

  26. A. G. Knyazeva and O. N. Kryukova, Appl. Solid State Chem., No. 1, 32–44 (2019).

  27. A. Bakinovskii, A. G. Knyazeva, M. G. Krinitcyn, et al., Int. J. Self-Propag. High-Temp. Synth., 28, No. 4, 245–255 (2019).

    Article  Google Scholar 

  28. N. Bukrina and A. Knyazeva, Int. J. Heat Mass Tran., 152, 119553 (2020).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Bukrina.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 33–39, March, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bukrina, N.V. Temperature Dependence of Thermal Conductivity and Physical Properties of Combustion Synthesis of Intermetallic Compound. Russ Phys J 64, 404–410 (2021). https://doi.org/10.1007/s11182-021-02344-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02344-z

Keywords

Navigation