Skip to main content
Log in

Influence of the Adhesion Force and Strain Hardening Coefficient of the Material on the Rate of Adhesive Wear in a Dry Tangential Frictional Contact

  • Published:
Russian Physics Journal Aims and scope

In the paper, we consider the tangential contact of single microasperities of the interacting surfaces the mechanical characteristics of which are close to the characteristics of typical rail steels. Using computer simulation by the method of discrete elements, we study the influence of the parameters of adhesive interaction of both external and internal surfaces on the regime of wear of asperities. It has been established that with increasing adhesion work, the wear regime changes from slipping (low wear) to grinding or brittle fracture of asperities (high wear), and this change is of threshold nature. An empirical sigmoid dependence of the location of the boundary between the two wear regimes (namely, the threshold value of the adhesive stress) on the value of the material hardening coefficient has been established. It is shown that the logistic nature of this dependence is due to the competition of two mechanisms of elastic strain energy dissipation, which determine the wear regime. These are plastic deformation and adhesion of the contacting surfaces. Special discussion is devoted to the influence of the scale factor on the threshold values of the mechanical characteristics of the material which provide the change of the wear regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Vakis, V. A. Yastrebov, J. Scheibert, et al., Tribol. Int., 125, 169–199 (2018).

    Article  Google Scholar 

  2. Q. Li and V. L. Popov, Phys. Mesomech.., 21, 94–98 (2018).

    Article  Google Scholar 

  3. R. Aghababaei, D. H. Warner, and J.-F. Molinari, Proc. Natl. Acad. Sci. U.S.A., 114, 7935–7940 (2017).

    Article  ADS  Google Scholar 

  4. A. Schirmeisen, Nat. Nanotechnol., 8, 81–82 (2013).

    Article  ADS  Google Scholar 

  5. M. Ciavarella and A. Papangelo, Phys. Mesomech., 21, 59–66 (2018).

    Article  Google Scholar 

  6. D. Maugis, J. Adhes. Sci. Technol., 10, 161–175 (1996).

    Google Scholar 

  7. Y. I. Rabinovich., J. J. Adler, A. Ata, et al., J. Colloid Interface Sci., 232, 10–16 (2000).

  8. J. T. Burwell and C. D. Strand, J. Appl. Phys., 23, 18–28 (1952).

  9. J. F. Archard, J. Appl. Phys., 24, 981–988 (1953).

  10. E. Rabinowicz, Friction and Wear of Materials, John Wiley & Sons, New York (2013). – P. 125–166.

  11. J. Von Lautz, L. Pastewka, P. Gumbsch, and M. Moseler, Tribol. Lett., 63, Art. 26 (2016).

  12. T. Brink and J.-F. Molinari, Phys. Rev. Mat., 3, Art. 053064 (2019).

  13. E. Rabinowicz, Wear, 2, 4–8 (1958).

  14. R. Aghababaei, D. H. Warner, and J.-H. Molinari, Nat. Commun., 7, Art. 11816 (2016).

  15. J. Zhong, R. Shakiba, and J. B. Adams, J. Phys. D, 46, Art. 055307 (2013).

  16. K. P. Zolnikov, D. S. Kryzhevich, and A. V. Korchuganov, Lett. Mater., 9, 197–201 (2019).

  17. S. G. Psakhie, K. P. Zolnikov, D. S. Kryzhevich, and A. V. Korchuganov, Sci. Rep., 9, Art. 3867 (2019).

  18. L. Jing and O. Stephansson, Fundamentals of Discrete Element Method for Rock Engineering: Theory and Applications, Elsevier, Amsterdam (2007).

  19. D. O. Potyondy and P. A. Cundall, Int. J. Rock. Mech. Min. Sci., 41, 1329–1364 (2004).

  20. N. L. Savchenko, A. V. Filippov, S. Yu. Tarasov, et al., Friction, 6, 323–340 (2018).

  21. S. Psakhie, E. Shilko, A. Smolin, et al., Frattura Integr. Strutt., 24, 59–91 (2013).

  22. E. V. Shilko, S. G. Psakhie, S. Schmauder, et al., Comp. Mater. Sci., 102, 267–285 (2015).

    Article  Google Scholar 

  23. S. G. Psakhie, A. V. Dimaki, E. V. Shilko, and S. V. Astafurov, Int. J. Num. Meth. Eng., 106, 623–643 (2016).

    Article  Google Scholar 

  24. S. Wu and X. Xu, Rock Mech. Rock Eng., 29, 1813–1830 (2016).

  25. N. Bicanic, in: Encyclopaedia of Computational Mechanics, E. Stein, R. de Borst, and T. R. J. Hughes, eds., John Wiley & Sons, Glasgow (2017), pp. 1–38.

  26. M. L. Wilkins, Computer Simulation of Dynamic Phenomena, Springer Verlag, Berlin (1999).

  27. F. M. Borodich, Adv. Appl. Mech., 47, 225–366 (2014).

  28. M. Inoue, in: Advanced Adhesives in Electornics. Materials, Properties and Applications, M. O. Alam and C. Bailey, eds., Woodhead Publishing, Cambridge (2011), pp. 157–198.

  29. D. S. Dugdale, J. Mech. Phys. Solids, 8, 100–104 (1960).

  30. D. J. Maugis, J. Colloid Interface Sci., 150, 243–269 (1992).

    Article  ADS  Google Scholar 

  31. I. V. Dudkin, E. V. Shilko, and A. V. Dimaki, AIP Conf. Proc., 2051, Art. 020069 (2018).

  32. A. M. Glezer, Bull. RAS. Physics, 71, No. 12, 1722 (2007).

  33. A. Dimaki, E. Shilko, S. Psakhie, and V. Popov, Facta Univ. Mech. Eng., 16, 41–50 (2018).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Dimaki.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 84–94, August, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dimaki, A.V., Dudkin, I.V., Popov, V.L. et al. Influence of the Adhesion Force and Strain Hardening Coefficient of the Material on the Rate of Adhesive Wear in a Dry Tangential Frictional Contact. Russ Phys J 62, 1398–1408 (2019). https://doi.org/10.1007/s11182-019-01857-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-019-01857-y

Keywords

Navigation