Skip to main content
Log in

Wave Interaction with the Defect Characterized by Nonlinearity of General Form

  • ELEMENTARY PARTICLE PHYSICS AND FIELD THEORY
  • Published:
Russian Physics Journal Aims and scope

Possible types of stationary states and waves in linear media separated by a nonlinear interface are analyzed. The mathematical formulation of the model is reduced to a one-dimensional boundary value problem for the nonlinear Schrödinger equation. The nonlinearity of the equation in the form of an arbitrary function of the desired field is taken into account only inside the waveguide. It is shown that there are stationary states of three types for different ranges of propagation constant values. The dispersion dependences of the propagation constant as functions of the parameters of the medium and the interface have explicitly been obtained for stationary states of all types, and conditions of their existence have been indicated. It is shown that total wave transition through the interface is possible. It has been established that the total transition of wave through the interface with nonzero parameters can occur only if the nonlinear response of the medium is taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. S. Panyaev and D. G. Sannikov, Comp. Optics, 41, No. 2, 183–191 (2017).

    Article  ADS  Google Scholar 

  2. Yu. S. Kivshar and G. P. Agraval, Optical Solitons. From Fiber Light Guides to Photon Crystals, Academic Press, San Diego (2003).

    Google Scholar 

  3. Yu. S. Kivshar and N. N. Rozanova, eds., Nonlinearity in Periodic Structures and Metamaterials: Collection of Articles [in Russian], Fizmatlit, Moscow (2014).

    Google Scholar 

  4. D. Mikhalake, P. G. Nazmitdinov, and V. K. Fedyanin, Fiz. Elem. Chast. Atomn. Yadra, 20, No. 1, 198–253 (1989).

    Google Scholar 

  5. A. M. Kosevich and A. S. Kovalev, Introduction to Nonlinear Physical Mechanics [in Russian], Naukova Dumka, Kiev (1989).

    MATH  Google Scholar 

  6. A. S. Davydov, Solitons in Molecular Systems [in Russian], Naukova Dumka, Kiev (1984).

    Google Scholar 

  7. S. E. Savotchenko Russ. Phys. J., 47, No. 5, 556–562 (2004).

    Article  Google Scholar 

  8. O. V. Korovai and P. I. Khadzhi, Fiz. Tverd. Tela, 52, No. 11, 2277–2282 (2010).

    Google Scholar 

  9. L. V. Feodorov and K. D. Lyakhomskaya, Pis’ma Zh. Tekh. Fiz., 23, No. 23, 36–39 (1997).

    Google Scholar 

  10. B. A. Usievich, D. Kh. Nurligareev, V. A. Sychugov, et al., Kvant. Elektr., 40, No. 5, 437–440 (2010).

    Article  Google Scholar 

  11. A. A. Sukhorukov and Yu. S. Kivshar, Phys. Rev. Lett., 87, 083901 (2001).

    Article  ADS  Google Scholar 

  12. N. N. Akhmediev, V. I. Korneyev, and Yu. V. Kuzmenko, Zh. Eksp. Teor. Fiz., 88, No. 1, 107–115 (1985).

    ADS  Google Scholar 

  13. Y. V. Bludov, D. A. Smirnova, Yu. S. Kivshar, et al., Phys. Rev. B, 89, 035406 (6) (2014).

    Article  ADS  Google Scholar 

  14. Y. V. Kartashov, B. A. Malomed, and L. Torner, Rev. Mod. Phys., 83, 247 (2011).

    Article  ADS  Google Scholar 

  15. V. I. Gorentsveig, Yu. S. Kivshar, A. M. Kosevich, and E. S. Syrkin, Fiz. Nizk. Temp., 16, No. 11, 1472–1482 (1990).

    Google Scholar 

  16. A. B. Borisov and V. V. Kiselev, Nonlinear Waves, Solitons, and Localized Structures in Magnetics. Vol. 1. Quasione-Dimensional Magnetic Solitons [in Russian], Ekaterinburg (2009).

  17. I. V. Gerasimchuk, I. Yu. Gorobets, and V. S. Gerasimchuk, J. Nano- Electron. Phys., 2, 02020-1–7 (2016).

  18. S. E. Savotchenko, Cond. Matter and Interphases, 19, No. 4, 567–572 (2017).

    Google Scholar 

  19. S. E. Savotchenko, Proc. Voronezh State Univ. Ser. Phys. Mathem., No. 1, 44–52 (2018).

  20. S. E. Savotchenko, Russ. Phys. J., 44, No. 4, 412–419 (2001).

    Article  Google Scholar 

  21. S. E. Savotchenko, Cond. Matter and Interphases, 19, No. 2, 291–295 (2017).

    Google Scholar 

  22. E. E. Savotchenko, Zh. Tekh. Ziz., 87, No. 12, 1776–1781 (2017).

    Google Scholar 

  23. S. E. Savotchenko, Commun. Nonlinear Sci. Numer. Simulation, 63, No. 10, 171–185 (2018).

    Article  MathSciNet  ADS  Google Scholar 

  24. Yu. S. Kivshar, A. M. Kosevich, and O. A. Chubykalo, Zh. Eksp. Teor. Fiz., 93, No. 3 (9), 968–977 (1987).

  25. Yu. S. Kivshar, A. M. Kosevich, and O. A. Chubykalo, Phys. Rev. A, 41, No. 3, 1677–1688 (1990).

    Article  ADS  Google Scholar 

  26. I. V. Gerasimchuk, J. Nano- Electron. Phys., 4, No. 4, 04024-1–4 (2012).

  27. I. V. Gerasimchuk, Zh. Eksp. Teor. Fiz., 121, No. 4, 596–605 (2015).

    Google Scholar 

  28. S. E. Savotchenko, Mod. Phys. Lett. B, 32, No. 10, 1850120–12 (2018).

    Article  MathSciNet  ADS  Google Scholar 

  29. S. E. Savotchenko, Pis’ma Zh. Eksp. Teor. Fiz., 107, No. 8, 481–483 (2018).

    Article  Google Scholar 

  30. S. E. Savotchenko, Cond. Matter and Interphases, 20, No. 2, 255–262 (2018).

    Google Scholar 

  31. P. V. Elyutin and V. D. Krivchenkov, Quantum Mechanics [in Russian], Fizmatlit, Moscow (2001).

    Google Scholar 

  32. M. D. Tocci, M. J. Bloemer, M. Scalora, et al., Appl. Phys. Lett., 66, 2324–2326 (1995).

    Article  ADS  Google Scholar 

  33. S. Lan and H. Ishikawa, J. Appl. Phys., 91, 2573–2577 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Savotchenko.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 3–12, January, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savotchenko, S.E. Wave Interaction with the Defect Characterized by Nonlinearity of General Form. Russ Phys J 62, 1–11 (2019). https://doi.org/10.1007/s11182-019-01676-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-019-01676-1

Keywords

Navigation