Skip to main content
Log in

Comparison of the Growth Processes of Germanium Quantum Dots on the Si(100) and Si(111) Surfaces

  • Published:
Russian Physics Journal Aims and scope

A comparative analysis is carried out of the growth peculiarities under molecular-beam epitaxy of germanium quantum dots on the silicon surfaces with different crystallographic orientations Si(100) and Si(111), including the case of the presence of tin surfactant on the surface. The free energy change, activation barrier of nucleation, critical thickness of the transition from two-dimensional growth to three-dimensional one, as well as the surface density and size distribution function of quantum dots in these systems are calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Eaglesham and M. Cerullo, Phys. Rev. Lett., 64, No. 16, 1943–1946 (1990).

    Article  ADS  Google Scholar 

  2. Y.-W. Mo, D. E. Savage, B. S. Swartzentruber, and M. G. Lagally, Phys. Rev. Lett., 65, No. 8, 1020–1023 (1990).

    Article  ADS  Google Scholar 

  3. S. Wirths, D. Buca, and S. Mantl, Prog. Cryst. Growth Characteriz. Mater., 62, 1–39 (2016).

    Article  Google Scholar 

  4. S. Zaima, O. Nakatsuka, N. Taoka, et al., Sci. Technol. Adv. Mater., 16, 043502 (1–22) (2015).

    Google Scholar 

  5. D. J. Paul, Semicond. Sci. Technol., 19, R75–R108 (2004).

    Article  ADS  Google Scholar 

  6. J. Kouvetakis and A. V.G. Chizmeshya, J. Mater. Chem., 17, 1649–1655 (2007).

    Article  Google Scholar 

  7. K. L. Wang, D. Cha, J. Liu, and C. Chen, Proc. IEEE, 95, No. 9, 1866–1882 (2007).

    Article  Google Scholar 

  8. A. A. Shklyaev and M. Ichikawa, Usp. Fiz. Nauk, 178, Vyp. 2, 139–169 (2008).

  9. J. Wu, S. Chen, A. Seeds, and H. Liu, J. Phys. D: Appl. Phys., 48, 363001 (1–28) (2015).

    Article  Google Scholar 

  10. V. G. Dubrovskii, Fiz. Tekh. Poluprovodn., 40, No. 10, 1153–1160 (2006).

    Google Scholar 

  11. A. V. Voitsekhovskii, N. A. Kul’chitskii, A. A. Mel’nikov, et al., Nano- and Mikrosistem. Tekh., No. 9, 20–31 (2014).

  12. D. V. Yurasov and Yu. N. Drozdov, Semiconductors, 42, 563–570 (2008).

    Article  ADS  Google Scholar 

  13. O. P. Pchelyakov, Yu. B. Bolkhovityanov, A. V. Dvurechenskii, et al., Fiz. Tekh. Poluprovodn., 34, No. 11, 1281–1299 (2000).

    Google Scholar 

  14. J.-N. Aqua, I. Berbezier, and L. Favre, Phys. Rep., 522, 59–189 (2013).

    Article  ADS  Google Scholar 

  15. K. Brunner, Rep. Prog. Phys., 65, No. 27, 27–72 (2002).

    Article  ADS  Google Scholar 

  16. X. L. Li, Y. Cao, and G. W. Yang, Phys. Chem. Chem. Phys., 12, 4768–4772 (2010).

    Article  Google Scholar 

  17. X. L. Li, G. Ouyang, and G. W. Yang, New J. Phys., 10, 043007 (1–14) (2008).

    Article  ADS  Google Scholar 

  18. A. V. Osipov, F. Schmitt, S. A. Kukushkin, and P. Hess, Appl. Surf. Sci., 188, 156–162 (2002).

    Article  ADS  Google Scholar 

  19. B. Voightlander and A. Zinner, Appl. Phys. Lett., 63, 3055–3057 (1993).

    Article  ADS  Google Scholar 

  20. P. W. Deelman, L. J. Schowalter, and T. Thundat, J. Vac. Sci. Technol. A, 15, 930–935 (1997).

    ADS  Google Scholar 

  21. A. A. Shklyaev, M. Shibata, and M. Ichikawa, Surf. Sci., 416, 192–199 (1998).

    Article  ADS  Google Scholar 

  22. S. A. Teys, Jubilee Collection of Selected Works of the Rzhanov Institute of Semiconductor Physics of the SB RAS (1964–2014) [in Russian], Parallel, Novosibirsk (2014).

    Google Scholar 

  23. V. G. Dubrovskii, Nucleation Theory and Growth of Nanostructures, Springer, Berlin (2014).

    Book  Google Scholar 

  24. R. Kern and P. Muller, J. Cryst. Growth, 146, 193–197 (1995).

    Article  ADS  Google Scholar 

  25. P. Muller and R. Kern, Appl. Surf. Sci., 102, 6–11 (1996).

    Article  ADS  Google Scholar 

  26. K. A. Lozovoy, A. V. Voitsekhovskii, A. P. Kokhanenko, and V. G. Satdarov, Izv. Vyssh. Uchebn. Zaved. Fiz., 56, No. 9/2, 49–51 (2013).

    Google Scholar 

  27. C. Ratsch and A. Zangwill, Surf. Sci., 293, 123–131 (1993).

    Article  ADS  Google Scholar 

  28. X. Zhang, V. G. Dubrovskii, N. V. Sibirev, and X. Ren, Cryst. Growth Des., 11, 5441–5448 (2011).

    Article  Google Scholar 

  29. A. V. Osipov, S. A. Kukushkin, F. Schmitt, and P. Hess, Phys. Rev. B, 64, 205421 (1–6) (2001).

    Article  ADS  Google Scholar 

  30. G. Ouyang, L. H. Liang, C. X. Wang, and G. W. Yang, Appl. Phys. Lett., 88, 091914 (1–3) (2006).

    Article  ADS  Google Scholar 

  31. H. T. Johnson and L. B. Freund, J. Appl. Phys., 81, 6081–6090 (1997).

    Article  ADS  Google Scholar 

  32. S. A. Kukushkin and A. V. Osipov, Usp. Fiz. Nauk, 168, Vyp. 10, 1083–1116 (1998).

  33. A. E. Dolbak and B. Z. Olshanetsky, CEJP, 4, 310–317 (2006).

    ADS  Google Scholar 

  34. A. V. Voitsekhovskii, A. P. Kokhanenko, and K. A. Lozovoy, Izv. Vyssh. Uchebn. Zaved. Fiz., 58, No. 8/3, 227–230 (2015).

    Google Scholar 

  35. K. A. Lozovoy, A. P. Kokhanenko, and A. V. Voitsekhovskii, Appl. Phys. Lett., 109, 021604 (1–4) (2016).

    Article  ADS  Google Scholar 

  36. A. Wakahara, K. K. Vong, T. Hasegawa, et al., J. Cryst. Growth, 151, 52–59 (1995).

    Article  ADS  Google Scholar 

  37. X. W. Lin, Z. Liliental-Weber, J. Washburn, et al., J. Vac. Sci. Technol. B, 13, 1805–1809 (1995).

    Article  Google Scholar 

  38. R. J. Jaccodine, J. Electrochem. Soc., 110, 524–527 (1963).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Kokhanenko.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 20–27, November, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kokhanenko, A.P., Lozovoy, K.A. & Voitsekhovskii, A.V. Comparison of the Growth Processes of Germanium Quantum Dots on the Si(100) and Si(111) Surfaces. Russ Phys J 60, 1871–1879 (2018). https://doi.org/10.1007/s11182-018-1296-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-018-1296-7

Keywords

Navigation