Skip to main content
Log in

Experimental Investigation and Modeling of Kinetic Processes in a KrF Laser

  • Quantum Electronics
  • Published:
Russian Physics Journal Aims and scope

The KrF laser with radiation pulse duration at half maximum of 20 ns is experimentally investigated. A self-consistent model is developed considering the electric circuit, the kinetic processes in the active medium, and the formation of laser radiation in a resonator. Time dependences of the discharge current and voltage on the capacitor and discharge electrodes, plasma particle concentration, and rate constants of the processes determining the characteristics of the discharge and laser radiation are presented. Processes are revealed that determines the characteristics of the space charge and laser radiation. The kinetics of the processes of production and annihilation of KrF excimer molecules is studied in detail. It is demonstrated that high rates of destruction of excimer molecules increases the time of delay of generation thereby decreasing the efficiency of laser generation and limiting the possibility of decreasing laser radiation pulse duration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Miyazaki, T. Hasama, K. Yamada, et al., J. Appl. Phys., 60, 2721 (1986).

    Article  ADS  Google Scholar 

  2. V. M. Borisov, I. E. Bragin, A. Yu. Vinohodov, and V. A. Vodchiz, Kvant. Elektron., 22, No. 6, 533 (1995).

    Google Scholar 

  3. V, M. Borisov, F. V. Borisov, and I. E. Bragin, Kvant. Elektron., 22, No. 5, 446 (1995).

  4. S. Watanabe and A. Endoh, Appl. Phys. Lett., 41, No. 9, 799 (1982).

    Article  ADS  Google Scholar 

  5. A. A. Zhupikov and A. M. Razhev, Kvant. Elektron., 25, No. 8, 687 (1998).

    Google Scholar 

  6. A. M. Razhev, A. I. Schedrin, A. G. Kalyuzhnaya, et al., Kvant. Elektron., 34, No. 10, 901 (2004).

    Article  ADS  Google Scholar 

  7. E. H. Bakscht, A. N. Panchenko, and V. F. Tarasenko, Kvant. Elektron., 30, No. 6, 506 (2000).

    Article  ADS  Google Scholar 

  8. Yu. I. Bychkov, A. N. Panchenko, E. A. Telminov, et al., Bull. Tomsk Polytech. Univ., 312, No. 2, 111–114 (2008).

    Google Scholar 

  9. F. Rannari, M. Obara, and T. Fujioka, J. Appl. Phys., 57, 4309 (1985).

    Article  ADS  Google Scholar 

  10. A. M. Boichenko, V. I. Derjiev, and S. I. Yakovlenko, Trudy Inst. Obshch. Fiz. Ross. Akad. Nauk, 21, 44 (1989).

    Google Scholar 

  11. D. Backhaus, PhD Thesis, Hanover (1996).

  12. Yu. I. Bychkov, S. A. Yampolskii, and A. G. Yastremskii, Kvant. Elektron., 40, No. 1, 28–34 (2010).

    Article  ADS  Google Scholar 

  13. Yu. I. Panchenko, M. V. Andreev, V. V. Dudarev, et al., Izv. Vyssh. Uchebn. Zaved. Fiz., 55, No. 10/3, 303–306 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Bychkov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 7, pp. 60–67, July, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bychkov, Y.I., Yastremskii, A.G., Yampolskaya, S.A. et al. Experimental Investigation and Modeling of Kinetic Processes in a KrF Laser. Russ Phys J 57, 929–936 (2014). https://doi.org/10.1007/s11182-014-0326-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-014-0326-3

Keywords

Navigation