Skip to main content
Log in

Cellular dislocation substructure in polycrystals of FCC solid solutions: quantitative characteristics, laws of formation, and role in hardening

  • Published:
Russian Physics Journal Aims and scope

A cycle of investigations carried out by the authors and devoted to the most important cellular dislocation substructure is generalized. Laws of formation of this substructure upon plastic strain of FCC Cu–Mn and Cu–Al alloy polycrystals are considered. The influence of the grain size, strain temperature, and alloy concentration on the parameters of evolving cellular dislocation substructures (DSS) is quantitatively analyzed by the transmission electron microscopy (TEM) method. Special attention is given to the kinetic phase transition in the defect subsystem leading to the formation of the cellular DSS. Based on modern dislocation models, it is demonstrated that hardening by the cellular DSS obeys the main dislocation laws.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. A. Koneva, É. V. Kozlov, and L. I. Trishkina, Metallofizika, 13, No. 10, 49–58 (1991).

    Google Scholar 

  2. N. A. Koneva and É. V. Kozlov, in: Structural Levels of Plastic Strain and Destruction, V. E. Panin, ed. [in Russian], Nauka, Novosibirsk (1990), pp. 123–186.

    Google Scholar 

  3. N. Hansen and D. Kuhlmann-Wilsdorf, Mater. Sci. Eng., 81, 141–161 (1986).

    Article  Google Scholar 

  4. D. Kuhlmann-Wilsdorf, Mater. Sci. Eng., A113, 1–41 (1989).

    Google Scholar 

  5. D. Kuhlmann-Wilsdorf, Sci. Mat., 34, No. 4, 641–650 (1996).

    Google Scholar 

  6. D. Kuhlmann-Wilsdorf, Phil. Mag., 79, No. 4, 955–1008 (1999).

    Article  Google Scholar 

  7. N. A. Koneva and É. V. Kozlov, Russ. Phys. J., No. 3, 275–302 (2002).

    Google Scholar 

  8. N. A. Koneva and É. V. Kozlov, Izv. Ross. Akad. Nauk, 66, No. 6, 824–829 (2002).

    Google Scholar 

  9. N. A. Koneva and É. V. Kozlov, Mater. Sci. Eng., 387–389, 64–66 (2004).

    Google Scholar 

  10. N. A. Koneva, L. A. Teplyakova, and É. V. Kozlov, in: Structure and Plastic Behavior of Alloys, L. E. Popova and L. Ya. Pudan, eds. [in Russian], Publishing House of Tomsk State University, Tomsk (1983), pp. 74–99.

    Google Scholar 

  11. N. A. Koneva, D. V. Lychagin, V. A. Starenchenko, and É. V. Kozlov, Deform. Razrush. Mater., No. 9, 24–32 (2006).

  12. N. A. Koneva, V. A. Starenchenko, D. V. Lychagin, et al., Mat. Sci. Eng., A483–A484, 179–183 (2008).

    Google Scholar 

  13. M. R. Staker and D. L. Holt, Acta. Met., 20, 569–579 (1972).

    Article  Google Scholar 

  14. N. M. Matveeva and É. V. Kozlov, Ordered Phases in Metallic Systems, Nova Science Publishers, Inc., New York (1996).

    Google Scholar 

  15. S. V. Starenchenko, É. V. Kozlov, and V. A. Starenchenko, Regularities in the Order-Disorder Thermal Phase Transition in Alloys with L12, L12(M), L12(MM), and D1a Superstructures [in Russian], Publishing House of Scientific and Technology Literature (2007).

  16. É. V. Kozlov, N. A. Koneva, and N. A. Popova, Fizich. Mesomekh., 12, No. 4, 93–106 (2009).

    Google Scholar 

  17. N. A. Koneva, L. I. Trishkina, T. V. Cherkasova, and É. V. Kozlov, Fund. Probl. Sovr. Meterialoved., 6, No. 4, 98–104 (2009).

    Google Scholar 

  18. N. P. Lyakishev, ed., State Diagrams of Bimetal Systems [in Russian], Mashinostroenie, Moscow. Vol. 1 (1996); Vol. 2 (1997).

  19. Th. Steffens, Ch. Schwink, A. Korner, and H. P. Karnthaler, Phil. Mag., A56, No. 2, 161–173 (1987).

    ADS  Google Scholar 

  20. S. Crampin, D. D. Vedensky, and R. Monnier, Phil. Mag., A67, No. 6, 1447–1457 (1993).

    ADS  Google Scholar 

  21. É. V. Kozlov, N. A. Koneva, and L. I. Trishkina, in: Disclinations and Rotational Strain of Solid Bodies, A. E. Romanov, ed. [in Russian], Publishing House of A. F. Ioffe Physical-Technical Institute, Leningrad (1990), pp. 89–125.

    Google Scholar 

  22. N. A. Koneva, L. I. Trishkina, and É. V. Kozlov, in: Kinetics and Thermodynamics of Plastic Strain, M. D. Starostenkov, ed. [in Russian], Publishing House of Altai Polytechnic Institute, Barnaul (1990), pp. 3–10.

    Google Scholar 

  23. E. O. Hall, Proc. Phys. Soc., B64, 747–753 (1951).

    ADS  Google Scholar 

  24. N. J. Petch, J. Iron Steel Inst., 174, 25–28 (1953).

    Google Scholar 

  25. É. V. Kozlov, A. N. Zhdanov, and N. A. Koneva, Zh. Funkts. Mater., 1, No. 1, 21–24 (2007).

    Google Scholar 

  26. M. Meyers and K. K. Chawla, Mechanical Behavior of Materials, Prentice–Hall, Inc., New Jersey (1999).

    MATH  Google Scholar 

  27. M. Ashby and D. Jones, Engineering Materials, Vols. 1, 2 [Russian translation], Intellekt Publishing House, Moscow (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Koneva.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 33–46, August, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koneva, N.A., Trishkina, L.I. & Kozlov, É.V. Cellular dislocation substructure in polycrystals of FCC solid solutions: quantitative characteristics, laws of formation, and role in hardening. Russ Phys J 54, 867–884 (2012). https://doi.org/10.1007/s11182-011-9695-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-011-9695-z

Keywords

Navigation