Skip to main content
Log in

Cadmium-Induced Oxidative Stress in the Bivalve Mollusk Modiolus modiolus

  • Biochemical Adaptation
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

Cadmium-induced oxidative stress in the bivalve Modiolus modiolus is studied from the standpoint of the universality of the mechanism of free-radical oxidation. The kinetics of cadmium accumulation by the bivalve was revealed in a laboratory experiment. The gills accumulated higher Cd levels than the digestive gland. In the process of cadmium accumulation, there was an increase in lipid peroxidation products (malondialdehyde and lipofuscin) and a reduction in the total oxiradical scavenging capacity (TOSC). Cadmium induces oxidative stress in molluscan tissues through damage to the antioxidation system. Thus, TOSC can provide a useful biochemical indicator of early pathological changes in the cell or the organism, as well as of the environmental effects of heavy metal pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Dovzhenko, N.V., Kavun V.Ya., Bel'cheva, N.N., and Chelomin, V.P., Biochemical Parameters of Oxidative Stress as Indicators of Anthropogenic Pollution of Water Ecosystems, Sb. statei konferentsii molodyh uchenyh TOI DVO RAN (Coll. Pap., Conf. Young Scientists, Pacific Institute of Oceanology, FEB RAS), Vladivostok: Dal'nauka, 2002, pp. 290–296.

    Google Scholar 

  2. Chelomin, V.P., Belcheva, N.N., and Zakhartsev, M.V., Biochemical Mechanisms of Adaptation to Cadmium and Copper Ions in the Mussel Mytilus trossulus, Biol. Morya, 1998, vol. 24, no.5, pp. 319–325.

    CAS  Google Scholar 

  3. Buege, J.A., and Aust, S.D., Microsomal Lipid Peroxidation, Methods in enzymology, New York: Academic Press, 1978, pp. 302–310.

    Google Scholar 

  4. Canesi, L., Ciacci, C., Piccoli, G., et al., In vitro and in vivo Effects of Heavy Metals on Mussel Digestive Gland Hexokinase Activity: The Role of Glutathione, Comp. Biochem. Physiol., ser. C, 1998, vol. 120, pp. 261–268.

    CAS  Google Scholar 

  5. Chelomin, V.P., Bobkova, E.A., Luk'yanova, O.N., and Chekmasova, N.M. Cadmium-Induced Alterations in Essential Trace Element Homeostasis in the Tissues of Scallop Mizuhopecten yessoensis, Comp. Biochem. Physiol., ser. C, 1995, vol. 110, no.3, pp. 329–335.

    CAS  Google Scholar 

  6. Depledge, M.N., Aagaard, A., and Gyorkos P., Assessment of Trace Metal Toxicity Using Molecular, Physiological and Behavioural Biomarkers, Mar. Biol. Bull., 1995, vol. 31, pp. 19–27.

    CAS  Google Scholar 

  7. Frenzilli, G., Nigro, M., Scarcelli, V.,et al., DNA Integrity and Total Oxyradical Scavenging Capacity in the Mediterranean Mussel, Mytilus galloprovincialis: A Field Study in a Highly Eutrophicated Coastal Lagoon, Aquat. Toxicol., 2001, vol. 53, pp. 19–32.

    Article  PubMed  CAS  Google Scholar 

  8. Greenberg, C.S. and Gaddock, P.R., Rapid Single-Step Membrane Protein Assay, Clin. Chem., 1982, vol. 28, no.7, pp. 1725–1726.

    PubMed  CAS  Google Scholar 

  9. Kiningham, K. and Kasarskis, E., Antioxidant Function of Metallothioneins, J. Trace Elem. Exp. Med., 1998, vol. 11, pp. 219–226.

    Article  CAS  Google Scholar 

  10. Klein, D., Sato, S., and Summer, K.H., Quantification of Oxidized Metallothionein in Biological Material by a Cd Saturation method, Anal. Biochem., 1994, vol. 221, pp. 405–409.

    Article  PubMed  CAS  Google Scholar 

  11. Nasci, C., Da Ros L., Campesan, G., et al., Clam Transplantation and Stress-Related Biomarkers as Useful Tools for Assessing Water Quality in Coastal Environments, Mar. Pollut. Bull., 1999, vol. 39, nos.1–12, pp. 255–260.

    Google Scholar 

  12. Regoli, F., Total Oxyradical Scavenging Capacity (TOSC) in Polluted and Translocated Mussels: A Predictive Biomarker of Oxidative Stress, Aquat. Toxicol., 2000, vol. 50, pp. 351–361.

    Article  PubMed  CAS  Google Scholar 

  13. Regoli, F. and Principato, G., Glutathione, Glutathione-Depended and Antioxidant Enzymes in Mussel, Mytilus galloprovincialis, Exposed to Metals under Field and Laboratory Conditions: Implications for the Use of Biochemical Biomarkers, Aquat. Toxicol., 1995, vol. 31, pp. 143–164.

    Article  CAS  Google Scholar 

  14. Regoli, F. and Winston, G.W., Applications of a New Method for Measuring the Total Oxyradical Scavenging Capacity in Marine Invertebrates, Mar. Environ. Res., 1998, vol. 46, nos.1–5, pp. 439–442.

    Google Scholar 

  15. Regoli, F., Winston, G.W., Mastrangelo, V., et al., Total Oxyradical Scavenging Capacity in Mussel Mytilus sp. as a New Index of Biological Resistance to Oxidative Stress, Chemosphere, 1998, vol. 37, nos.14–15, pp. 2773–2783.

    Google Scholar 

  16. Regoli, F., Nigro, M., Bompadre, S., and Winston, G.W., Total Oxidant Scavenging Capacity (TOSC) of Microsomal and Cytosolic Fraction from Antarctic, Arctic and Mediterranean Scallops: Differentiation Between Three Potent Oxidants, Aquat. Toxicol., 2000, vol. 49, pp. 13–25.

    Article  PubMed  CAS  Google Scholar 

  17. Regoli, F., Gorbi S., Frenzilli, G., et al., Oxidative Stress in Ecotoxicology: From the Analysis of Individual Antioxidants to a More Integrated Approach, Mar. Environ. Res., 2002, vol. 54, pp. 419–423.

    Article  PubMed  CAS  Google Scholar 

  18. Shen, Y., Sangiah, S. Na+, K+-ATPase, Glutathione, and Hydroxyl Free Radicals in Cadmium Chloride-Induced Testicular Toxicity in Mice, Arch. Environ. Contam. Toxicol., 1995, vol. 29, pp. 174–179.

    Article  PubMed  CAS  Google Scholar 

  19. Shimasaki, H., Hirai, N., and Ueta, N., Comparison of Fluorescence Characteristics of Products of Peroxidation of Membrane Phospholipids with Those of Products Derived from Reaction of Malonaldehyde with Glycine as a Model of Lipofuscin Fluorescent Substances, Biochem., 1988, vol. 104, pp. 761–766.

    CAS  Google Scholar 

  20. Sies, H., Oxidative Stress: Oxidants and Antioxidants, London: Academic Press, 1991.

    Google Scholar 

  21. Stohs, S.J. and Bagchi, D., Oxidative Mechanisms in the Toxicity of Metal Ions, Free Rad. Biol. Med., 1995, vol. 18, no.2, pp. 312–336.

    Article  Google Scholar 

  22. Storey, K.B., Oxidative Stress: Animal Adaptations in Nature, Brazil. J. Med. Biol. Res., 1996, vol. 29, pp. 1715–1733.

    CAS  Google Scholar 

  23. Torres, M.A., Testa, C.P., Gaspari, C., et al. Oxidative Stress in Mussel Mytella guyanensis from Polluted Mangroves on Santa Catarina Island, Brazil, Mar. Pollut. Bull., 2002, vol. 44, pp. 923–932.

    PubMed  Google Scholar 

  24. Viarengo, A. Heavy Metals in Marine Invertebrates: Mechanisms of Regulation and Toxicity at the Cellular Level, CRC Crit. Rev. Aquat. Sci., 1989, vol. 1, pp. 295–317.

    CAS  Google Scholar 

  25. Viarengo, A., Burlando, B., Ceratto, N., and Panfoli, I., Antioxidant Role of Metallothioneins: A Comparative Overview, Cell. Mol. Biol., 2000, vol. 46, no.2, pp. 407–417.

    PubMed  CAS  Google Scholar 

  26. Wayner, D.D. M., Burton, G.W., and Ingold, K.U., The Antioxidant Efficiency of Vitamin E is Concentration-Dependent, Biochim. Biophys. Acta, 1986, vol. 884, pp. 119–123.

    PubMed  CAS  Google Scholar 

  27. Winston, G.W., Regoli, F., Dugas, A.J. Jr., et al., A Rapid Gas Chromatographic Assay for Determining Oxyradical Scavenging Capacity of Antioxidants and Biological Fluids, Free Rad. Biol. Med., 1998, vol. 24, no.3, pp. 480–493.

    Article  PubMed  CAS  Google Scholar 

  28. Wright, D.A., Trace Metal and Major Ion Interactions in Aquatic Animals, Mar. Pollut. Bull., 1995, vol. 31, nos.1–3, pp. 8–18.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text Copyright © 2005 by Biologiya Morya, Dovzhenko, Kurilenko, Bel'cheva, Chelomin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dovzhenko, N.V., Kurilenko, A.V., Bel'cheva, N.N. et al. Cadmium-Induced Oxidative Stress in the Bivalve Mollusk Modiolus modiolus . Russ J Mar Biol 31, 309–313 (2005). https://doi.org/10.1007/s11179-005-0093-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11179-005-0093-7

Key words

Navigation