Skip to main content
Log in

Base Excision Repair: AP Endonucleases and DNA Polymerases

  • Theoretical Papers and Reviews
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The DNA base lesions in living cells occur permanently and with high frequency as a result of the action of exogenous and endogenous factors. The main mechanism providing removal of such lesions is base excision repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Korolev, V.G., Excision Repair of Damaged DNA Bases: DNA Glycosylases, Russ. J. Genet., 2005, vol. 41, no.6, pp. 583–592.

    Article  CAS  Google Scholar 

  2. Lindahl, T., Repair of Intrinsic DNA Lesions, Mutat. Res., 1990, vol. 238, pp. 305–311.

    PubMed  CAS  Google Scholar 

  3. Doetsch, P. and Cunningham, R., Enzymology of AP Endonucleases, Mutat. Res., 1990, vol. 236, pp. 173–201.

    PubMed  CAS  Google Scholar 

  4. Otterlei, M., Kavli, B., Standal, R., et al., Repair of Chromosomal Abasic Sites in Vivo Involves at Least Three Different Repair Pathways, EMBO J., 2000, vol. 19, pp. 5542–5551.

    Article  PubMed  CAS  Google Scholar 

  5. Bonura, T., Schultz, R., and Friedberg, E.C., An Enzyme Activity from Escherichia coli That Attacks Single-Stranded Deoxyribopolymers and Single-Stranded Deoxyribonucleic Acid Containing Apyrimidine Sites, Biochemistry, 1982, vol. 21, pp. 2548–2556.

    Article  PubMed  CAS  Google Scholar 

  6. Inone, T. and Kada, T., Purification and Properties of a Bacillus subtilis Endonuclease Specific for Apurinic Sites in DNA, J. Biol. Chem., 1978, vol. 253, pp. 8559–8563.

    Google Scholar 

  7. Ljungquist, S., A New Endonuclease from Escherichia coli Acting at Apurinic Sites in DNA, J. Biol. Chem., 1977, vol. 252, pp. 2808–2814.

    PubMed  CAS  Google Scholar 

  8. Saporito, S.M., Smith-White, B.J., and Cunningham, R.P., Nucleotide Sequence of the xth Gene of Escherichia coli K-12, J. Bacteriol., 1988, vol. 170, pp. 4542–4547.

    PubMed  CAS  Google Scholar 

  9. Yajko, D.M. and Weiss, B., Mutations Simultaneously Affecting Endonuclease II and Exonuclease III in Escherichia coli, Proc. Natl. Acad. Sci. USA, 1975, vol. 72, pp. 688–692.

    PubMed  CAS  Google Scholar 

  10. Ljungquist, S., Lindahl, T., and Howard-Flanders, P., Methyl Methanesulfonate-Sensitive Mutant of Escherichia coli Deficient in an Endonuclease Specific for Apurinic Sites in Deoxyribonucleic Acid, J. Bacteriol., 1976, vol. 126, pp. 646–653.

    PubMed  CAS  Google Scholar 

  11. Demple, B., Halbrook, J., and Linn, S., Escherichia coli xth Mutants Are Hypersensitive to Hydrogen Peroxide, J. Bacteriol., 1983, vol. 153, pp. 1079–1082.

    PubMed  CAS  Google Scholar 

  12. Foster, P.L. and Davis, E.F., Loss of an Apurinic/Apyrimidinic Site Endonuclease Increases the Mutagenicity of N-Methyl-N′-Nitro-Nitrosoguanidine to Escherichia coli, Proc. Natl. Acad. Sci. USA, 1987, vol. 84, pp. 2891–2895.

    PubMed  CAS  Google Scholar 

  13. Weiss, B., Endonuclease II of Escherichia coli Is Exonuclease III, J. Biol. Chem., 1976, vol. 251, pp. 1896–1901.

    PubMed  CAS  Google Scholar 

  14. Henner, W.D., Grunberg, S.M., and Haseltine, W.A., Enzyme Action at 3′ Termini of Ionizing Radiation-Induced DNA Strand Breaks, J. Biol. Chem., 1983, vol. 258, pp. 15 198–15 205.

    CAS  Google Scholar 

  15. Demple, B., Johnson, A., and Fung, D., Exonuclease III and Endonuclease IV Remove 3′ Blocks from DNA Synthesis Primers in H2O2-Damaged Escherichia coli, Proc. Natl. Acad. Sci. USA, 1986, vol. 83, pp. 7731–7735.

    PubMed  CAS  Google Scholar 

  16. Chan, E. and Weiss, B., Endonuclease IV of Escherichia coli Is Induced by Paraquat, Proc. Natl. Acad. Sci. USA, 1987, vol. 84, pp. 3189–3193.

    PubMed  CAS  Google Scholar 

  17. Cunningham, R.P., Saporito, S.M., Spizer, S.G., and Weiss, B., Endonuclease IV (nfo) Mutant of Escherichia coli, J. Bacteriol., 1986, vol. 168, pp. 1120–1127.

    PubMed  CAS  Google Scholar 

  18. Takeuchi, M., Lillis, R., Demple, B., and Takeshita, M., Interactions of Escherichia coli Endonuclease IV and Exonuclease III with Abasic Sites in DNA, J. Biol. Chem., 1994, vol. 269, pp. 21 907–21 914.

    CAS  Google Scholar 

  19. Johnson, A.W. and Demple, B., Yeast DNA Diesterase for 3′-Fragments of Deoxyribose: Purification and Physical Properties of a Repair Enzyme for Oxidative DNA Damage, J. Biol. Chem., 1988, vol. 263, pp. 18 009–18 016.

    CAS  Google Scholar 

  20. Johnson, A.W. and Demple, B., Yeast DNA 3′-Repair Diesterase Is the Major Cellular Apurinic/Apyrimidinic Endonuclease: Substrate Specificity and Kinetics, J. Biol. Chem., 1988, vol. 263, pp. 18 017–18 022.

    CAS  Google Scholar 

  21. Popoff, C., Spira, A.I., Johnson, A.W., and Demple, B., Yeast Structural Gene (APN1) for the Major Apurinic Endonuclease: Homology to Escherichia coli Endonuclease IV, Proc. Natl. Acad. Sci. USA, 1990, vol. 87, pp. 4193–4197.

    PubMed  CAS  Google Scholar 

  22. Ramotar, D., Popoff, S.C., Gralla, E.B., and Demple, B., Cellular Role of Yeast Apn1 Apurinic Endonuclease/3′-Diesterase: Repair of Oxidative and Alkylation DNA Damage and Control of Spontaneous Mutation, Mol. Cell. Biol., 1991, vol. 11, pp. 4537–4544.

    PubMed  CAS  Google Scholar 

  23. Kunz, B.A., Henson, E.S., Roche, H., et al., Specificity of the Mutator Caused of Deletion of the Yeast Structural Gene (APN1) for the Major Apurinic Endonuclease, Proc. Natl. Acad. Sci. USA, 1994, vol. 91, pp. 8165–8169.

    PubMed  CAS  Google Scholar 

  24. Ramotar, D., Popoff, S.C., and Demple, B., Complementation of DNA Repair-Deficient Escherichia coli by the Yeast Apn1 Apurinic/Apyrimidinic Endonuclease Gene, Mol. Microbiol., 1993, vol. 5, pp. 149–155.

    Google Scholar 

  25. Johnson, R.E., Torres-Ramos, C.A., Izumi, T., et al., Identification of APN2, the Saccharomyces cerevisiae Homolog of the Major Human AP Endonuclease HAP1, and Its Role in the Repair of Abasic Sites, Genes Dev., 1998, vol. 12, pp. 3137–3143.

    PubMed  CAS  Google Scholar 

  26. Bennett, R.A., The Saccharomyces cerevisiae ETH1 Gene, an Inducible Homolog of Exonuclease III That Provides Resistance to DNA-Damaging Agents and Limits Spontaneous Mutagenesis, Mol. Cell. Biol., 1999, vol. 19, pp. 1800–1809.

    PubMed  CAS  Google Scholar 

  27. Unk, I., Haracska, L., Johnson, R.E., et al., Apurinic Endonuclease Activity of Yeast Apn2 Protein, J. Biol. Chem., 2000, vol. 275, pp. 22 427–22 434.

    Article  CAS  Google Scholar 

  28. Unk, I., Haracska, L., Prakash, S., and Prakash, L., 3′-Phosphodiesterase and 3′ → 5′ Exonuclease Activities of Yeast Apn2 Protein and Requirement of These Activities for Repair of Oxidative DNA Damage, Mol. Cell. Biol., 2001, vol. 21, pp. 1656–1661.

    Article  PubMed  CAS  Google Scholar 

  29. Ribar, B., Izumi, T., and Mitra, S., The Major Role of Human AP-Endonuclease Homolog Apn2 in Repair of Abasic Sites in Schizosaccharomyces pombe, Nucleic Acids Res., 2004, vol. 32, pp. 115–126.

    Article  PubMed  CAS  Google Scholar 

  30. Demple, B., Herman, T., and Chen, D.S., Cloning and Expression of APE, the cDNA Encoding the Major Human Apurinic Endonuclease: Definition of Family of DNA Repair Enzymes, Proc. Natl. Acad. Sci. USA, 1991, vol. 88, pp. 11 450–11 454.

    CAS  Google Scholar 

  31. Robson, C.N. and Hickson, I.D., Isolation of cDNA Clones Encoding a Human Apurinic/Apyrimidinic Endonuclease That Corrects DNA Repair and Mutagenesis Defects in E. coli xth (Exonuclease III) Mutants, Nucleic Acids Res., 1991, vol. 19, pp. 5519–5523.

    PubMed  CAS  Google Scholar 

  32. Harrison, L., Ascione, L., Menninger, G., et al., Human Apurinic/Apyrimidinic Endonuclease Gene (APE): Structure and Genomic Mapping (Chromosome 14q11.2-12), Hum. Mol. Genet., 1992, vol. 1, pp. 677–680.

    PubMed  CAS  Google Scholar 

  33. Walker, L.J., Graig, R.B., Harris, A.L., and Hickson, I.D., A Role for the Human DNA Repair Enzyme HAP1 in Cellular Protection against DNA Damaging and Hypoxic Stress, Nucleic Acids Res., 1994, vol. 22, pp. 4884–4889.

    PubMed  CAS  Google Scholar 

  34. Chen, D.S., Herman, T., and Demple, B., Two Distinct Human DNA Diesterases That Hydrolyze 3′-Blocking Deoxyribose Fragments from Oxidized DNA, Nucleic Acids Res., 1991, vol. 19, pp. 5907–5914.

    PubMed  CAS  Google Scholar 

  35. Klungland, A., Hoss, M., Gunz, D., et al., Base Excision Repair of Oxidative DNA Damage Activated by XPG Protein, Mol. Cell, 1999, vol. 3, pp. 33–42.

    Article  PubMed  CAS  Google Scholar 

  36. Barzilay, G. and Hickson, I.D., Structure and Function of Apurinic/Apyrimidinic Endonucleases, BioEssays, 1995, vol. 17, pp. 713–719.

    Article  PubMed  CAS  Google Scholar 

  37. Chou, K.-M. and Cheng, Y.-C., An Exonucleolytic Activity of Human Apurinic/Apyrimidinic Endonuclease on 3′ Mispaired DNA, Nature, 2002, vol. 415, pp. 655–659.

    Article  PubMed  CAS  Google Scholar 

  38. Xu, Y.J., Kim, E.Y., and Demple, B., Excision of C-4′-Oxidized Deoxyribose Lesions from Double-Stranded DNA by Human Apurinic/Apyrimidinic Endonuclease (Ape1 Protein) and DNA Polymerase, J. Biol. Chem., 1998, vol. 273, pp. 28 837–28 844.

    CAS  Google Scholar 

  39. Hang, B., Chenna, A., Fraenkel-Conrat, H., and Singer, B., A Unusual Mechanism for the Major Human Apurinic/Apyrimidinic (AP) Endonuclease Involving 5′ Cleavage of DNA Containing a Benzene-Derived Exocyclic Adduct in the Absence of an AP Site, Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 13 737–13 741.

    Article  CAS  Google Scholar 

  40. Parsons, J.L., Dianova, I.I., and Dianov, G.L., APE1 Is the Major 3′-Phosphoglycolate Activity in Human Cell Extracts, Nucleic Acids Res., 2004, vol. 32, pp. 3531–3536.

    Article  PubMed  CAS  Google Scholar 

  41. Wilson, D.M. III and Barsky, D., The Major Human Abasic Endonuclease: Formation, Consequences and Repair of Abasic Lesions in DNA, Mutat. Res., 2001, vol. 485, pp. 283–307.

    PubMed  CAS  Google Scholar 

  42. Hadi, M.Z. and Wilson, D.M. III, A Second Human Protein with Homology to the Escherichia coli Abasic Endonuclease Exonuclease III, Environ. Mol. Mutagen., 2000, vol. 36, pp. 312–324.

    Article  PubMed  CAS  Google Scholar 

  43. Gorman, M.A., Morera, S., Rothwell, D.G., et al., The Crystal Structure of the Human DNA Repair Endonuclease HAP1 Suggests the Recognition of Extra-Helical Deoxyribose at DNA Abasic Sites, EMBO J., 1997, vol. 16, pp. 6548–6558.

    Article  PubMed  CAS  Google Scholar 

  44. Mol, C.D., Izumi, T., Mitra, S., and Tainer, J.A., DNA-Bound Structures and Mutants Reveal Abasic DNA Binding by APE1 DNA Repair and Coordination, Nature, 2000, vol. 403, pp. 451–455.

    PubMed  CAS  Google Scholar 

  45. Yang, H., Clendenin, W.M., Wong, D., et al., Enhanced Activity of Adenine-DNA Glycosylase (Myh) by Apurinic/Apyrimidinic Endonuclease (Ape1) in Mammalian Base Excision Repair of an A/GO Mismatch, Nucleic Acids Res., 2001, vol. 29, pp. 743–752.

    PubMed  CAS  Google Scholar 

  46. Vidal, A.E., Hikson, I.D., Boiteux, S., and Radicella, J.P., Mechanism of Stimulation of the DNA Glycosylase Activity of hOGG1 by the Major Human AP Endonuclease: Bypass of the AP Lyase Activity Step, Nucleic Acids Res., 2001, vol. 29, pp. 1285–1292.

    Article  PubMed  CAS  Google Scholar 

  47. Hill, J.W., Hazra, T.K., Izumi, T., and Mitra, S., Stimulation of Human 8-Oxoguanine-DNA Glycosylase by AP-Endonuclease: Potential Coordination of the Initial Steps in Base Excision Repair, Nucleic Acids Res., 2001, vol. 29, pp. 430–438.

    Article  PubMed  CAS  Google Scholar 

  48. Ischenko, A.A. and Saparbaev, M.R., Alternative Nucleotide Incision Repair Pathway for Oxidative DNA Damage, Nature, 2002, vol. 415, pp. 183–187.

    Article  PubMed  Google Scholar 

  49. Gros, L., Ishchenko, A.A., Ide, H., et al., The Major Human Endonuclease (Ape1) Is Involved in the Nucleotide Incision Repair Pathway, Nucleic Acids Res., 2004, vol. 32, pp. 73–81.

    Article  PubMed  CAS  Google Scholar 

  50. Wang, Z., Wu, X., and Friedberg, E.C., DNA Repair Synthesis during Base Excision Repair in Vitro Is Catalyzed by DNA Polymerase ε and Is Influenced by DNA Polymerases α and β in Saccharomyces cerevisiae, Mol. Cell. Biol., 1993, vol. 13, pp. 1051–1058.

    PubMed  CAS  Google Scholar 

  51. Blank, A., Kim, B., and Loeb, L.A., DNA Polymerase δ Is Required for Base Excision Repair of DNA Methylation Damage in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA, 1994, vol. 91, pp. 9047–9051.

    PubMed  CAS  Google Scholar 

  52. Suszek, W., Baranowska, H., Zuk, J., and Jachymczyk, W.J., DNA Polymerase III Is Required for DNA Repair in Saccharomyces cerevisiae, Curr. Genet., 1993, vol. 24, pp. 200–204.

    Article  PubMed  CAS  Google Scholar 

  53. Leem, S.-H., Ropp, P.A., and Sugino, A., The Yeast Saccharomyces cerevisiae DNA Polymerase IV: Possible Involvement in Double Strand Break DNA Repair, Nucleic Acids Res., 1994, vol. 22, pp. 3011–3017.

    PubMed  CAS  Google Scholar 

  54. Prasad, R., Widen, S.G., Singhal, R.K., et al., Yeast Open Reading Frame YCR14C Encodes a DNA β-Polymerase-Like Enzyme, Nucleic Acids Res., 1994, vol. 21, pp. 5301–5307.

    Google Scholar 

  55. McInnis, M., O'Neill, G., Fossum, K., and Reagan, M.S., Epistatic Analysis of the Roles of the RAD27 and POL4 Gene Products in DNA Base Excision Repair in S. cerevisiae, DNA Repair, 2002, vol. 1, pp. 311–315.

    Article  PubMed  CAS  Google Scholar 

  56. Wu, X. and Wang, Z., Relationships between Yeast Rad27 and Apn1 in Response to Apurinic/Apyrimidinic (AP) Sites in DNA, Nucleic Acids Res., 1999, vol. 27, pp. 956–962.

    PubMed  CAS  Google Scholar 

  57. Harrington, J.J. and Lieber, M.R., Functional Domains within FEN-1 and RAD2 Define a Family of Structure-Specific Endonucleases: Implications for Nucleotide Excision Repair, Genes Dev., 1994, vol. 8, pp. 1344–1355.

    PubMed  CAS  Google Scholar 

  58. Zhu, F.X., Biswas, E.E., and Biswas, S.B., Purification and Characterization of the DNA Polymerase α-Associated Exonuclease: The RTH1 Gene Product, Biochemistry, 1997, vol. 36, pp. 5947–5954.

    PubMed  CAS  Google Scholar 

  59. Kozhina, T.N., Kozhin, S.A., Latypov, V.F., and Korolev, V.G., RAD29 and RAD31, New Genes of Yeast Saccharomyces cerevisiae Involved in DNA Repair Control: Isolation and Genetic Characterization of Mutants, Russ. J. Genet., 2000, vol. 36, no.6, pp. 627–633.

    CAS  Google Scholar 

  60. Kozhin, S.A., Kozhina, T.N., Latypov, V.F., and Korolev, V.G., RAD29 and RAD31, New Genes of the Yeast Saccharomyces cerevisiae Involved in DNA Repair Control: Determining Possible Functions of These Genes, Russ. J. Genet., 2000, vol. 36, no.8, pp. 845–852.

    CAS  Google Scholar 

  61. Unk, I., Haracska, L., Gomes, X.V., et al., Stimulation of 3′ → 5′ Exonuclease and 3′-Phosphodiesterase Activities of Yeast Apn2 by Proliferating Cell Nuclear Antigen, Mol. Cell. Biol., 2002, vol. 22, pp. 6480–6486.

    Article  PubMed  CAS  Google Scholar 

  62. Sobol, R.W., Horton, J.K., Kuh, R., et al., Requirement of Mammalian DNA Polymerase β in Base Excision Repair, Nature, 1996, vol. 379, pp. 183–186.

    Article  PubMed  CAS  Google Scholar 

  63. Dianov, G., Price, A., and Lindahl, T., Generation of Single-Nucleotide Repair Patches Following Excision of Uracil Residues from DNA, Mol. Cell. Biol., 1992, vol. 12, pp. 1605–1612.

    PubMed  CAS  Google Scholar 

  64. Klungland, A. and Lindahl, T., Second Pathway for Completion of Human DNA Base Excision Repair: Reconstitution with Purified Proteins and Requirement for DNAase IV (FEN1), EMBO J., 1997, vol. 16, pp. 3341–3348.

    Article  PubMed  CAS  Google Scholar 

  65. Frosina, G., Fortini, P., Rossi, O., et al., Two Pathways for Base Excision Repair in Mammalian Cells, J. Biol. Chem., 1996, vol. 271, pp. 9573–9578.

    PubMed  CAS  Google Scholar 

  66. Matsumoto, Y. and Kim, K., Excision of Deoxyribose Phosphate Residues by DNA Polymerase β during DNA Repair, Science, 1995, vol. 269, pp. 699–702.

    PubMed  CAS  Google Scholar 

  67. Kumar, A., Widen, S.G., Williams, K.R., et al., Studies of the Domain Structure of Mammalian DNA Polymerase: Identification of a Discrete Template Binding Domain, J. Biol. Chem., 1990, vol. 265, pp. 2124–2131.

    PubMed  CAS  Google Scholar 

  68. Kumar, A., Abbotts, J., Karawya, E., and Wilson, S.H., Identification and Properties of the Catalytic Domain of Mammalian DNA Polymerase β, Biochemistry, 1990, vol. 29, pp. 7156–7159.

    PubMed  CAS  Google Scholar 

  69. Sugo, N., Aratani, Y., Nagashima, Y., et al., Neonatal Lethality with Abnormal Neurogenesis in Mice Deficient in DNA Polymerase, EMBO J., 2000, vol. 19, pp. 1397–1404.

    Article  PubMed  CAS  Google Scholar 

  70. Fortini, P., Pascucci, B., Belisario, F., and Dogliotti, E., DNA Polymerase β Is Required for Efficient DNA Strand Break Repair Induced by Methyl Methanesulfonate but Not by Hydrogen Peroxide, Nucleic Acids Res., 2000, vol. 28, pp. 3040–3046.

    Article  PubMed  CAS  Google Scholar 

  71. Sobol, R.W., Watson, D.E., Nakamura, J., et al., Mutations Associated with Base Excision Repair Deficiency and Methylation-Induced Genotoxic Stress, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, pp. 6860–6865.

    Article  PubMed  CAS  Google Scholar 

  72. Singhal, R.K., Prasad, R., and Wilson, S.H., DNA Polymerase β Conducts the Gap-Filling Step in Uracil-Initiated Base Excision Repair in a Bovine Testis Nuclear Extract, J. Biol. Chem., 1995, vol. 270, pp. 949–957.

    PubMed  CAS  Google Scholar 

  73. Prasad, R., Singhal, R.K., Srivastava, D.K., et al., Specific Interaction of DNA Polymerase β and DNA Ligase I in a Multiprotein Base Excision Repair Complex from Bovine Testis, J. Biol. Chem., 1996, vol. 271, pp. 16 000–16 007.

    CAS  Google Scholar 

  74. Allison, S.L., Dianova, I.I., and Dianov, G.L., DNA Polymerase β Is the Major DRP Lyase Involved in Repair of Oxidative Base Lesions in DNA by Mammalian Cell Extracts, EMBO J., 2001, vol. 20, pp. 6919–6926.

    Google Scholar 

  75. Dianov, G.L., Thybo, T., Dianova, I.I., et al., Single Nucleotide Patch Base Excision Repair Is the Major Pathway for Removal of Thymine Glycol from DNA in Human Cell Extracts, J. Biol. Chem., 2000, vol. 275, pp. 11 809–11 813.

    Article  CAS  Google Scholar 

  76. Saitoh, T., Shinmura, K., Yamaguchi, S., et al., Enhancement of OGG1 Protein AP Lyase Activity by Increase of APEX Protein, Mutat. Res., 2001, vol. 486, pp. 31–40.

    PubMed  CAS  Google Scholar 

  77. Podlucsky, A.J., Dianova, I.I., Podust, V.N., et al., Human DNA Polymerase β Initiates DNA Synthesis during Long-Patch Repair of Reduced AP Sites in DNA, EMBO J., 2001, vol. 20, pp. 1477–1482.

    Google Scholar 

  78. Dianov, G.L., Prasad, R., Wilson, S.H., and Bohr, V.A., Role of DNA Polymerase β in the Excision Step of Long Patch Mammalian Base Excision Repair, J. Biol. Chem., 1999, vol. 274, pp. 13 741–13 743.

    Article  CAS  Google Scholar 

  79. Fortini, P., Pascucci, B., Parlanti, E., et al., Different DNA Polymerases Are Involved in the Short-and Long-Patch Base Excision Repair in Mammalian Cells, Biochemistry, 1998, vol. 37, pp. 3575–3580.

    Article  PubMed  CAS  Google Scholar 

  80. Parikh, S.S., Mol, C.D., Slupphang, G., et al., Base-Excision Repair Initiation Revealed by Crystal Structures and DNA-Binding Kinetics of Human Uracil-DNA Glycosylase Bound to DNA, EMBO J., 1998, vol. 17, pp. 5414–5426.

    Article  Google Scholar 

  81. Waters, T.R., Gallinari, P., Jiricny, J., and Swann, P.F., Human Thymine DNA Glycosylase Binds to Apurinic Sites in DNA but Is Displaced by Human Apurinic Endonuclease 1, J. Biol. Chem., 1999, vol. 274, pp. 67–74.

    Article  PubMed  CAS  Google Scholar 

  82. Bennett, R.A.O., Wilson, D.M. III, Wong, D., and Demple, B., Interaction of Human Apurinic Endonuclease and DNA Polymerase β in the Base Excision Repair Pathways, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 7166–7169.

    PubMed  CAS  Google Scholar 

  83. Ranalli, T.A., Tom, S., and Bambara, R.A., AP Endonuclease 1 Coordinates Flap Endonuclease 1 and DNA Ligase 1 Activity in Long Patch Base Excision Repair, J. Biol. Chem., 2002, vol. 277, pp. 41 715–41 724.

    CAS  Google Scholar 

  84. Dianova, I.I., Bohr, V.A., and Dianov, G.L., Interaction of Human AP Endonuclease 1 with Flap Endonuclease 1 and Proliferating Cell Nuclear Antigen Involved in Long-Patch Base Excision Repair, Biochemistry, 2001, vol. 40, pp. 12 639–12 644.

    Article  CAS  Google Scholar 

  85. DeMott, M.S., Zigman, S., and Bambara, R.A., Replication Protein A Stimulates Long Patch DNA Base Excision Repair, J. Biol. Chem., 1998, vol. 273, pp. 27 492–27 498.

    Article  CAS  Google Scholar 

  86. Prasad, R., Dianov, G.L., Bohr, V.A., and Wilson, S.H., FEN1 Stimulation of DNA Polymerase β an Excision Step in Mammalian Long Patch Base Excision Repair, J. Biol. Chem., 2000, vol. 275, pp. 4460–4466.

    Article  PubMed  CAS  Google Scholar 

  87. Caldecott, K.W., Mammalian DNA Single-Strand Break Repair: An X-ra(y)ted Affair, Bioessays, 2001, vol. 23, pp. 447–455.

    Article  PubMed  CAS  Google Scholar 

  88. Marsin, S., Vidal, A.E., Sossou, M., et al., Role of XRCC1 in the Coordination and Stimulation of Oxidatis8-44 074.

  89. Vidal, A.E., Boiteux, S., Hickson, I.D., and Radicella, J.P., XRCC1 Coordinates the Initial and Late Stages of DNA Abasic Site Repair through Protein-Protein Interactions, EMBO J., 2001, vol. 20, pp. 6530–6539.

    Article  PubMed  CAS  Google Scholar 

  90. Marintchev, A., Robertson, A., Dimitriadis, E.K., et al., Domain-Specific Interaction in the XRCC1-DNA Polymerase β Complex, Nucleic Acids Res., 2000, vol. 28, pp. 2049–2059.

    Article  PubMed  CAS  Google Scholar 

  91. Kubata, Y., Nash, R.A., Klungland, A., et al., Reconstitution of DNA Base Excision-Repair with Purified Human Proteins: Interaction between DNA Polymerase β and the XRCC1 Protein, EMBO J., 1996, vol. 15, pp. 6662–6670.

    Google Scholar 

  92. Cappelli, E., Taylor, R., Cevasco, M., et al., Involvement of XPCC1 and DNA Ligase III Gene Products in DNA Base Excision Repair, J. Biol. Chem., 1997, vol. 272, pp. 23 970–23 975.

    Article  CAS  Google Scholar 

  93. Dantzer, F., de la Rubia, G., Menissier-de Murcia, J., et al., Base Excision Repair Is Impaired in Mammalian Cells Lacking Poly(ADP-Ribose) Polymerase-1, Biochemistry, 1999, vol. 39, pp. 7559–7569.

    Google Scholar 

  94. Caldecott, K.W., Aoufouchi, S., Johnson, P., and Shall, S., XRCC1 Polypeptide Interacts with DNA Polymerase β and Possible Poly(ADP-Ribose) Polymerase and DNA Ligase III and Is a Novel Molecular “Nick-Sensor” in Vitro, Nucleic Acids Res., 1996, vol. 24, pp. 4387–4394.

    Article  PubMed  CAS  Google Scholar 

  95. Allison, S.L., Dianova, I.I., and Dianov, G.L., Poly(ADP-Ribose) Polymerase in Base Excision Repair: Always Engaged, but Not Essential for DNA Damage Processing, Acta Biochem. Polonica, 2003, vol. 50, pp. 169–179.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Genetika, Vol. 41, No. 10, 2005, pp. 1301–1309.

Original Russian Text Copyright © 2005 by Korolev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korolev, V.G. Base Excision Repair: AP Endonucleases and DNA Polymerases. Russ J Genet 41, 1063–1070 (2005). https://doi.org/10.1007/s11177-005-0201-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11177-005-0201-y

Keywords

Navigation