Skip to main content
Log in

Energies of transport of individual ions out of water into aprotic solvents: Specific features of the acetate ion transport

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

An analysis of techniques used for the determination of the free energy of the transport of an individual ion out of water into an aprotic solvent shows that the most reliable technique at present seems to be a method based on the determination of potentials relative to a cobalticenium electrode in combination with the energy required for the transport of the cobalticenium ion calculated after Born. This method is combined with relevant original and literature data to determine the transport energies for more than thirty ions out of water into propylene carbonate, dimethyl sulfoxide, dimethylformamide, acetonitrile, and acetone. The solubility of anhydrous sodium acetate in the above solvents are measured and the obtained data are used to determine the transport energies for the acetate ion and a neutral molecule of acetic acid. It is shown that, because of a large contribution of short-range interactions, especially the hydrogen bonds, the energies in question cannot be calculated with the aid of continuum electrostatics. This proves that the purely electrostatic method, which has been extensively used in biophysics for calculating pK of acid groups of proteins, is fallacious.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Pleskov, V.A., Zh. Fiz. Khim., 1940, vol. 14, p. 1477.

    Google Scholar 

  2. Pleskov, V.A., Usp. Khim., 1947, vol. 16, p. 254.

    Google Scholar 

  3. Koepp, H.M., Wendt, H., and Strehlow, H., Z. Electrochem., 1960, vol. 64, p. 483.

    Google Scholar 

  4. Gritzner, G., Inorg. Chim. Acta, 1977, vol. 24, p. 5.

    Google Scholar 

  5. Grunwald, E., Baughman, J., and Kohnstam, G., J. Am. Chem. Soc., 1960, vol. 82, p. 5801.

    Google Scholar 

  6. Arnett, E.M. and McKelvey, D.R., J. Am. Chem. Soc., 1966, vol. 88, p. 2598.

    Google Scholar 

  7. Parker, A.J. and Alexander, R., J. Am. Chem. Soc., 1968, vol. 90, p. 3313.

    Google Scholar 

  8. Krishtalik, L.I., Alpatova, N.M., and Ovsyannikova, E.V., Elektrokhimiya, 1990, vol. 26, p. 436.

    Google Scholar 

  9. Coetzee, J.F. and Sharpe, W.P., J. Phys. Chem., 1971, vol. 75, p. 3141.

    Google Scholar 

  10. Parker, A.J. and Alexander, R., J. Am. Chem. Soc., 1968, vol. 90, p. 3313.

    Google Scholar 

  11. Senda, M. and Takahashi, R., Rev. Polarogr., 1974, vol. 20, p. 56.

    Google Scholar 

  12. Kakutani, T., Joshikazu, M., and Senda, M., Bull. Chem. Soc. Jpn., 1978, vol. 51, p. 2847.

    Google Scholar 

  13. Madec, C. and Courtot-Coupez, J., J. Electroanal. Chem., 1977, vol. 84, p. 177.

    Google Scholar 

  14. Krishtalik, L.I., Alpatova, N.M., and Ovsyannikova, E.V., Elektrokhimiya, 1990, vol. 26, p. 429.

    Google Scholar 

  15. Krishtalik, L.I., Alpatova, N.M., and Ovsyannikova, E.V., Electrochim. Acta, 1991, vol. 36, p. 435.

    Google Scholar 

  16. Bunakova, L.V., Topolev, V.V., Khanova, L.A., and Krishtalik, L.I., Elektrokhimiya, 2004, vol. 40, p. 913.

    Google Scholar 

  17. Gritzner, G., J. Phys. Chem., 1986, vol. 90, p. 5478.

    Google Scholar 

  18. Krishtalik, L.I., Alpatova, N.M., and Ovsyannikova, E.V., Elektrokhimiya, 1995, vol. 31, p. 871.

    Google Scholar 

  19. Vorotyntsev, M.A. and Kornyshev, A.A., Elektrostatika sred s prostranstvennoi dispersiei (The Electrostatics of Spatial Dispersion Media), Moscow: Nauka, 1993.

    Google Scholar 

  20. Alpatova, N.M., Ovsyannikova, E.V., and Krishtalik, L.I., Elektrokhimiya, 1991, vol. 27, p. 931.

    Google Scholar 

  21. Marcus, Y., Kamlet, M.J., and Taft, R.W., J. Phys. Chem., 1988, vol. 92, p. 3613.

    Google Scholar 

  22. Gritzner, G., Electrochim. Acta, 1998, vol. 44, p. 73.

    Google Scholar 

  23. Marcus, Y., Electrochim. Acta, 1998, vol. 44, p. 91.

    Google Scholar 

  24. Weiner, S.J., Kollman, P.A., Case, D.A., et al., J. Am. Chem. Soc., 1984, vol. 106, p. 765.

    Google Scholar 

  25. Nicholls, A. and Honig, B., J. Comput. Chem., 1991, vol. 12, p. 435.

    Google Scholar 

  26. Mertts, E.L., Private communication.

  27. Alexander, R. and Parker, A.J., J. Am. Chem. Soc., 1967, vol. 89, p. 5549.

    Google Scholar 

  28. Spravochnik khimika (A Chemist’s Handbook), Nikol’skii, B.P., Ed., Moscow: Khimiya, 1965, vol. III.

    Google Scholar 

  29. Akhadov, Ya.Y., Dielektricheskie parametry chistykh zhidkostei (Dielectric Properties of Pure Liquids), Moscow: Mosk. Aviats. Inst., 1999.

    Google Scholar 

  30. Zielinska, J., Makowski, M., Maj, K., Liwo, A., and Chmurzynski, L., Anal. Chim. Acta, 1999, vol. 401, p. 317.

    Google Scholar 

  31. Clare, B.W., Cook, D., Ko, E.C.F., Mac, Y.C., and Parker, A.J., J. Am. Chem. Soc., 1966, vol. 88, p. 1911.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Krishtalik.

Additional information

Translated from Elektrokhimiya, Vol. 41, No. 3, 2005, pp. 325–332.

Original Russian Text Copyright © 2005 by Bunakova, Khanova, Krishtalik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bunakova, L.V., Khanova, L.A. & Krishtalik, L.I. Energies of transport of individual ions out of water into aprotic solvents: Specific features of the acetate ion transport. Russ J Electrochem 41, 287–293 (2005). https://doi.org/10.1007/s11175-005-0064-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11175-005-0064-5

Key words

Navigation