Skip to main content
Log in

Electrophilic functionalization of N-substituted vicinal alkynyl(amino)cyclopropanes via selective lithiation

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

N-Alkyl-N-Boc-substituted 1-amino-2-alkynylcyclopropanes undergo selective lithiation at the carbon atom in α-position relative to the triple bond under the action of BunLi in THF at −65 °C. Lithiation of the starting compounds representing mixtures of cis- and trans-isomers affords the trans-isomers of organolithium derivatives which react with electrophiles (acetaldehyde, acetone, dimethyl disulfide, CO2, methyl chloroformate, and iodomethane) to give the corresponding 2-substituted 1-amino-2-alkynylcyclopropanes in up to 93% yields exclusively as isomers with the cis-arrangement of the amino group and the incoming substituent. When DMF is used as the electrophilic reagent, the initially formed cyclopropane carbaldehyde is selectively isomerized to the corresponding dihydrofuran derivative. Reactions of 1-(N-benzyl-N-Boc-amino)-2-alkynylcyclopropanes with BunLi occur mainly at the PhCH2N group without affecting the cyclopropane ring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. V. D. Gvozdev, K. N. Shavrin, O. M. Nefedov, Russ. Chem. Bull., 2019, 68, 1384; DOI: https://doi.org/10.1007/s11172-019-2566-4.

    Article  CAS  Google Scholar 

  2. V. D. Gvozdev, K. N. Shavrin, A. A. Ageshina, O. M. Nefedov, Russ. Chem. Bull., 2017, 66, 862; DOI: https://doi.org/10.1007/s11172-017-1819-3.

    Article  CAS  Google Scholar 

  3. W. Zang, L. Wang, Y. Wei, M. Shi, Y. Guo, Adv. Synth. Catal., 2019, 361, 2321; DOI: https://doi.org/10.1002/adsc.201900053.

    Article  CAS  Google Scholar 

  4. A. Urbanaitė, I. Čikotienė, Eur. J. Org. Chem., 2016, 2016, 5294; DOI: https://doi.org/10.1002/ejoc.201600985.

    Article  Google Scholar 

  5. D. Pan, Y. Wei, M. Shi, Org. Lett., 2017, 19, 3584; DOI: https://doi.org/10.1021/acs.orglett.7b01558.

    Article  CAS  PubMed  Google Scholar 

  6. K. Luo, Y. Li, Z. Fu, L. Zhang, Z. Wang, J. Xu, B. Yu, L. Wu, Adv. Synth. Catal., 2021, 363, 4222; DOI: https://doi.org/10.1002/adsc.202100392.

    Article  CAS  Google Scholar 

  7. V. D. Gvozdev, K. N. Shavrin, M. P. Egorov, O. M. Nefedov, Russ. Chem. Bull., 2021, 70, 2051; DOI: https://doi.org/10.1007/s11172-021-3318-9.

    Article  CAS  Google Scholar 

  8. J. M. Fernández-García, H. A. Garro, L. Fernández-García, P. García-García, M. A. Fernández-Rodríguez, I. Merino, E. Aguilar, Adv. Synth. Catal., 2017, 359, 3035; DOI: https://doi.org/10.1002/adsc.201700264.

    Article  Google Scholar 

  9. D.-F. Chen, C. H. Chrisman, G. M. Miyake, ACS Catalysis, 2020, 10, 2609; DOI: https://doi.org/10.1021/acscatal.0c00281.

    Article  PubMed  PubMed Central  Google Scholar 

  10. A. Zampella, M. V. D’Auria, L. Minale, C. Debitus, C. Roussakis, J. Am. Chem. Soc., 1996, 118, 11085; DOI: https://doi.org/10.1021/ja9621004.

    Article  CAS  Google Scholar 

  11. B. Yu, Acc. Chem. Res., 2018, 51, 507; DOI: https://doi.org/10.1021/acs.accounts.7b00573.

    Article  CAS  PubMed  Google Scholar 

  12. M. Berlin, C. W. Boyce, M. de Lera Ruiz, J. Med. Chem., 2011, 54, 26; DOI: https://doi.org/10.1021/jm100064d.

    Article  CAS  PubMed  Google Scholar 

  13. Ch. M. Marson, Chem. Rev., 2011, 111, 7121; DOI: https://doi.org/10.1021/cr900166w.

    Article  CAS  PubMed  Google Scholar 

  14. J. W. Corbett, S. S. Ko, J. D. Rodgers, L. A. Gearhart, N. A. Magnus, L. T. Bacheler, S. Diamond, S. Jeffrey, R. M. Klabe, B. C. Cordova, S. Garber, K. Logue, G. L. Trainor, P. S. Anderson, S. K. Erickson-Viitanen, J. Med. Chem., 2000, 43, 2019; DOI: https://doi.org/10.1021/jm990580e.

    Article  CAS  PubMed  Google Scholar 

  15. F. Gnad, O. Reiser, Chem. Rev., 2003, 103, 1603; DOI: https://doi.org/10.1021/cr010015v.

    Article  CAS  PubMed  Google Scholar 

  16. J. Salaün, in Small Ring Compounds in Organic Synthesis VI, Vol. 207, Ed. A. de Meijere, Springer, Berlin, Heidelberg, 2000, p 1.

  17. A. N. Proshin, T. P. Trofimova, O. N. Zefirova, I. V. Zhirkina, D. A. Skvortsov, S. O. Bachurin, Russ. Chem. Bull., 2021, 70, 510; DOI: https://doi.org/10.1007/s11172-021-3116-4.

    Article  CAS  Google Scholar 

  18. O. O. Sokolova, J. F. Bower, Chem. Rev., 2021, 121, 80; DOI: https://doi.org/10.1021/acs.chemrev.0c00166.

    Article  CAS  PubMed  Google Scholar 

  19. J. Liu, Y. An, H.-Y. Jiang, Z. Chen, Tetrahedron Lett., 2008, 49, 490; DOI: https://doi.org/10.1016/j.tetlet.2007.11.093.

    Article  CAS  Google Scholar 

  20. S. I. Kozhushkov, K. Wagner-Gillen, A. F. Khlebnikov, A. de Mejere, Synthesis, 2010, 2010, 3967; DOI: https://doi.org/10.1055/s-0030-1258964.

    Article  Google Scholar 

  21. P. Panchaud, J.-P. Surivet, S. Diethelm, A.-C. Blumstein, J.-C. Gauvin, L. Jacob, F. Masse, G. Mathieu, A. Mirre, Ch. Schmitt, M. Enderlin-Paput, R. Lange, C. Gnerre, S. Seeland, Ch. Herrmann, H. H. Locher, P. Seiler, D. Ritz, G. Rueedi, J. Med. Chem., 2020, 63, 88; DOI: https://doi.org/10.1021/acs.jmedchem.9b01605.

    Article  CAS  PubMed  Google Scholar 

  22. K. N. Shavrin, V. D. Gvozdev, O. M. Nefedov, Russ. Chem. Bull., 2010, 59, 396; DOI: https://doi.org/10.1007/s11172-010-0092-5.

    Article  CAS  Google Scholar 

  23. K. N. Shavrin, V. D. Gvozdev, D. V. Budanov, S. V. Yurov, O. M. Nefedov, Mendeleev Commun., 2006, 16, 73; DOI: https://doi.org/10.1070/MC2006v016n02ABEH002267.

    Article  Google Scholar 

  24. V. D. Gvozdev, K. N. Shavrin, M. P. Egorov, O. M. Nefedov, Mendeleev Commun., 2021, 31, 654; DOI: https://doi.org/10.1016/j.mencom.2021.09.020.

    Article  CAS  Google Scholar 

  25. M. Mato, M. Montesinos-Magraner, A. R. Sugranyes, A. M. Echavarren, J. Am. Chem. Soc., 2021, 143, 10760; DOI: https://doi.org/10.1021/jacs.1c05422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Intermune, Inc.; Array Biopharma, Inc., Patent WO2008/137779, 2008.

  27. Y. S. Park, P. Beak, Tetrahedron, 1996, 52, 12333; DOI: https://doi.org/10.1016/0040-4020(96)00736-3.

    Article  CAS  Google Scholar 

  28. Yu. Ermolovich, M. V. Barysevich, J. Adamson, O. Rogova, S. Kaabel, I. Järving, N. Gathergood, V. Snieckus, D. G. Kananovich, Org. Lett., 2019, 21, 969; DOI: https://doi.org/10.1021/acs.orglett.8b03955.

    Article  CAS  PubMed  Google Scholar 

  29. V. D. Gvozdev, K. N. Shavrin, M. P. Egorov, Russ. Chem. Bull., 2022, 71, 1830; DOI: https://doi.org/10.1007/s11172-022-3597-9.

    Article  CAS  Google Scholar 

  30. R. Tanikaga, S. Yamada, T. Nishikawa, A. Matsui, Tetrahedron, 1998, 54, 8933; DOI: https://doi.org/10.1016/S0040-4020(98)00509-2.

    Article  CAS  Google Scholar 

  31. O. G. Kulinkovich, I. G. Tishchenko, N. A. Roslik, J. Org. Chem. USSR, 1984, 20, 480.

    Google Scholar 

  32. A. M. Bernard, A. Frongia, P. P. Piras, F. Secci, M. Spiga, Org. Lett., 2005, 7, 4565; DOI: https://doi.org/10.1021/ol0514606.

    Article  CAS  PubMed  Google Scholar 

  33. E. Wenkert, M. E. Alonso, B. L. Buckwalter, E. L. Sanchez, J. Am. Chem. Soc., 1983, 105, 2021; DOI: https://doi.org/10.1021/ja00345a059.

    Article  CAS  Google Scholar 

  34. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B, 1988, 37, 785; DOI: https://doi.org/10.1103/PhysRevB.37.785.

    Article  CAS  Google Scholar 

  35. A. D. Becke, Phys. Rev. A, 1988, 38, 3098; DOI: https://doi.org/10.1103/PhysRevA.38.3098.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Gvozdev.

Ethics declarations

The authors declare no competing interests.

Additional information

No human or animal subjects were used in this research.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 8, pp. 1781–1790, August, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gvozdev, V.D., Shavrin, K.N. & Egorov, M.P. Electrophilic functionalization of N-substituted vicinal alkynyl(amino)cyclopropanes via selective lithiation. Russ Chem Bull 72, 1781–1790 (2023). https://doi.org/10.1007/s11172-023-3960-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3960-5

Key words

Navigation