Skip to main content
Log in

Nucleophilic activation of the sulfur S8 cyclic form as a green chemistry tool

  • Review
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The review summarizes data on reactions with participation of the elemental cyclic form of sulfur S8, the key step of which is activation the eight-membered cycle S8 by its opening under the action of various nucleophiles. This approach of involving sulfur in synthetic processes is promising from the point of view of green chemistry, as it is an alternative to the energy-intensive method of thermal treatment with the formation of sulfur diradicals. Special attention is paid to the creation of reactive systems by the reaction of elemental sulfur with dimethyl phosphate ionic liquids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. D. Boyd, Angew. Chem., Int. Ed., 2016, 55, 15486; DOI: https://doi.org/10.1002/anie.201604615.

    Article  CAS  Google Scholar 

  2. J. Smith, X. Wu, N. Berry, T. Hasell, J. Polym. Sci, Part A: Polym. Chem., 2018, 56, 1777; DOI: https://doi.org/10.1002/pola.29067.

    Article  CAS  Google Scholar 

  3. J. Wagenfeld, K. Al-Ali, S. Almheiri, A. Slavens, N. Calvet, Waste Management, 2019, 95, 78; DOI: https://doi.org/10.1016/j.wasman.2019.06.002.

    Article  PubMed  Google Scholar 

  4. M. Worthington, R. Kucera, J. Chalker, Green Chem., 2017, 19, 2748; DOI: https://doi.org/10.1039/C7GC00014F.

    Article  CAS  Google Scholar 

  5. Mineral Commodity Summaries. U.S. Department of the Interior, Washington, DC, USA, 2020, 160.

  6. T. Nguyen, Synth. Catal., 2017, 359, 1066; DOI: https://doi.org/10.1002/adsc.201601329.

    Article  CAS  Google Scholar 

  7. A. Davarpanah, B. Mirshekari, T. Jafari Behbahani, M. Hemmati, J. Pet. Explor. Prod. Technol., 2018, 8, 743; DOI: https://doi.org/10.1007/s13202-017-0422-3.

    Article  CAS  Google Scholar 

  8. R. Khatun, M. Reza, M. Moniruzzaman, Z. Yaakob, Renew. Sustain. Energy Rev., 2017, 76, 608; DOI: https://doi.org/10.1016/j.rser.2017.03.077.

    Article  CAS  Google Scholar 

  9. J. Lim, J. Pyun, K. Char, Angew. Chem., Int. Ed., 2015, 54, 3249; DOI: https://doi.org/10.1002/anie.201409468.

    Article  CAS  Google Scholar 

  10. P. Harrisson, Global Sulphur Market Outlook, 2016; https://docplayer.net/23907549-Global-sulphur-market-outlook.html.

  11. J. A. Smith, R. Mulhall, S. Goodman, G. Fleming, H. Allison, R. Raval, T. Hasell, ACS Omega, 2020, 5, 5229; DOI: https://doi.org/10.1021/acsomega.9b04267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. N. Tarasova, A. Zanin, E. Krivoborodov, Y. Mezhuev, RSC Adv., 2021, 11, 9008; DOI: https://doi.org/10.1039/D0RA10507D.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. S. Greer, J. Phys. Chem. B, 1998, 102, 5413; DOI: https://doi.org/10.1021/jp981592z.

    Article  CAS  Google Scholar 

  14. S. Diez, A. Hoefling, P. Theato, W. Pauer, Polymers, 2017, 9, 59; DOI: https://doi.org/10.3390/polym9020059.

    Article  PubMed  PubMed Central  Google Scholar 

  15. M. Mikuriya, K. Taniguchi, Y. Koyama, H. Watanabe, D. Yoshioka, R. Mitsuhashi, E. Asato, X-ray Structure Analysis Online, 2020, 36, 1; DOI: https://doi.org/10.2116/xray-struct.36.1.

    Article  CAS  Google Scholar 

  16. R. Ludwig, J. Behler, B. Klink, F. Weinhold, Angew. Chem., Int. Ed., 2002, 41, 3199; DOI: https://doi.org/10.1002/1521-3773(20020902)41:17<3199::AID-ANIE3199>3.0.CO;2-9.

    Article  CAS  Google Scholar 

  17. R. O. Jones, P. Ballone, J. Chem. Phys., 2003, 118, 9257; DOI: https://doi.org/10.1063/1.1794693.

    Article  CAS  Google Scholar 

  18. A. Tobolsky, A. Eisenberg, J. Am. Chem. Soc., 1959, 81, 780; DOI: https://doi.org/10.1021/ja01513a004.

    Article  CAS  Google Scholar 

  19. M. Crockett, A. Evans, M. Worthington, I. Albuquerque, A. Slattery, C. Gibson, J. Campbell, D. Lewis, G. Bernardes, J. Chalke, Angew. Chem., Int. Ed., 2016, 55, 1714; DOI: https://doi.org/10.1002/anie.201508708.

    Article  CAS  Google Scholar 

  20. D. Parker, S. Chong, T. Hasell, RSC Adv., 2018, 8, 27892; DOI: https://doi.org/10.1039/C8RA04446E.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. S. Oishi, K. Oi, J. Kuwabara, R. Omoda, Y. Aihara, T. Fukuda, T. Takahashi, J. Choi, M. Watanabe, T. Kanbara, ACS Appl. Polym. Mater., 2019, 1, 1195; DOI: https://doi.org/10.1021/acsapm.9b00197.

    Article  CAS  Google Scholar 

  22. A. Simmonds, J. Griebel, J. Park, K. Kim, W. Chung, V. Oleshko, J. Kim, E. Kim, R. Glass, C. Soles, Y. Sung, K. Char, J. Pyun, ACS Macro Lett., 2014, 3, 229; DOI: https://doi.org/10.1021/mz400649w.

    Article  CAS  PubMed  Google Scholar 

  23. J. Griebel, S. Namnabat, E. Kim, R. Himmelhuber, D. Moronta, W. Chung, A. Simmonds, K. Kim, J. van der Laan, N. Nguyen, E. Dereniak, M. E. Mackay, K. Char, R. S. Glass, R. A. Norwood, J. Pyun, Adv. Mater., 2014, 26, 3014; DOI: https://doi.org/10.1002/adma.201305607.

    Article  CAS  PubMed  Google Scholar 

  24. J. Griebel, N. Nguyen, A. Astashkin, R. Glass, M. Mackay, K. Char, J. Pyun, ACS Macro Lett., 2014, 3, 1258; DOI: https://doi.org/10.1021/mz500678m.

    Article  CAS  PubMed  Google Scholar 

  25. S. Zhuo, Y. Huang, C. Liu, H. Wang, B. Zhang, Chem. Commun., 2014, 50, 11208; DOI: https://doi.org/10.1039/C4CC05574H.

    Article  CAS  Google Scholar 

  26. M. Salman, B. Karabay, L. Karabay, A. Cihaner, J. Appl. Polym. Sci., 2016, 133, 43655; DOI: https://doi.org/10.1002/app.43655.

    Article  Google Scholar 

  27. Z. Sun, M. Xiao, S. Wang, D. Han, S. Song, G. Chen, Y. Meng, J. Mater. Chem., 2014, 2, 9280; DOI: https://doi.org/10.1039/C4TA00779D.

    Article  CAS  Google Scholar 

  28. Y. Zhang, N. Pavlopoulos, T. Kleine, M. Karayilan, R. Glass, K. Char, J. Pyun, J. Polym. Sci., Part A: Polym. Chem., 2019, 57, 7; DOI: https://doi.org/10.1002/pola.29266.

    Article  CAS  Google Scholar 

  29. A. Ysupova, A. Shamov, R. Ahmetova, V. Pervushin, A. Khatsrinov, J. Quantum Chem., 2011, 111, 2575; DOI: https://doi.org/10.1002/qua.22754.

    Article  CAS  Google Scholar 

  30. A. Yusupova, A. Khatsrinov, R. Akhmetova, Inorg. Mater., 2018, 54, 809; DOI: https://doi.org/10.1134/S0020168518080174.

    Article  CAS  Google Scholar 

  31. L. R. Baraeva, A. A. Yusupova, R. T. Akhmetova, A. I. Khatsrinov, Zh. V. Mezhevich, Russ. J. Phys. Chem. A, 2019, 93, 1106; DOI: https://doi.org/10.1134/S0036024419060049.

    Article  CAS  Google Scholar 

  32. A. Yusupova, A. Khatsrinov, L. Shafigullin, Solid State Phenomena, 2020, 299, 181; DOI: https://doi.org/10.4028/www.scientific.net/SSP.299.181.

    Article  Google Scholar 

  33. A. M. Joseph, B. George, K. N. Madhusoosaban, R. Alex, Rubber Sci., 2015, 28, 82.

    Google Scholar 

  34. R. V. Shafikov, A. Yu. Spivak, V. N. Odinokov, Russ. Chem. Bull., 2010, 59, 2129; DOI: https://doi.org/10.1007/s11172-010-0367-x.

    Article  CAS  Google Scholar 

  35. V. G. Krasovskiy, E. A. Chernikova, L. M. Glukhov, G. I. Kapustin, A. A. Koroteev, L. M. Kustov, Russ. Chem. Bull., 2018, 67, 1621; DOI: https://doi.org/10.1007/s11172-018-2268-3.

    Article  CAS  Google Scholar 

  36. A. V. Chernyak, M. P. Berezin, N. A. Slesarenko, V. A. Zabrodin, V. I. Volkov, A. V. Yudina, N. I. Shuvalova, O. V. Yarmolenko, Russ. Chem. Bull., 2016, 65, 2053; DOI: https://doi.org/10.1007/s11172-016-1551-4.

    Article  CAS  Google Scholar 

  37. X. Yang, Q. Wang, H. Yu, Russ. Chem. Bull., 2014, 63, 555; DOI: https://doi.org/10.1007/s11172-014-0471-4.

    Article  CAS  Google Scholar 

  38. N. Hartler, J. Libert, A. Teder, Ind. Eng. Chem. Process Des. Dev., 1967, 6, 398; DOI: https://doi.org/10.1021/i260024a002.

    Article  CAS  Google Scholar 

  39. S. Penczek, R. Slazak, A. Duda, Nature (London), 1978, 273, 738; DOI: https://doi.org/10.1038/273738a0.

    Article  CAS  Google Scholar 

  40. S. Penczek, A. Duda, Phosphorus, Sulfur, Silicon Relat. Elem., 1991, 59, 47; DOI: https://doi.org/10.1080/10426509108045700.

    Article  Google Scholar 

  41. T. Baran, A. Duda, S. Penczek, Die Makromolek. Chem., 1984, 185, 2337; DOI: https://doi.org/10.1002/macp.1984.021851111.

    Article  CAS  Google Scholar 

  42. A. Duda, S. Penczek, Macromolecules, 1982, 15, 36; DOI: https://doi.org/10.1021/ma00229a007.

    Article  CAS  Google Scholar 

  43. K. Wang, M. Groom, R. Sheridan, S. Zhang, E. Block, J. Sulf. Chem., 2013, 34, 55; DOI: https://doi.org/10.1080/17415993.2012.721368.

    Article  Google Scholar 

  44. W. Hodgson, S. Buckler, G. Peters, J. Am. Chem. Soc., 1963, 85, 543; DOI: https://doi.org/10.1021/ja00888a012.

    Article  CAS  Google Scholar 

  45. Y. Zhang, T. Kleine, K. Carothers, D. Phan, R. Glass, M. Mackay, K. Char, J. Pyun, Polym. Chem., 2018, 9, 2290; DOI: https://doi.org/10.1039/c8py00270c.

    Article  CAS  Google Scholar 

  46. M. Karayilan, T. Kleine, K. Carothers, J. Griebel, K. Frederick, D. Loy, R. Glass, M. Mackay, K. Char, J. Pyun, J. Polym. Sci., Part A: Polym. Chem., 2020, 58, 35; DOI:https://doi.org/10.1002/pola.29480.

    CAS  Google Scholar 

  47. H. Darabi, K. Aghapoor, M. Tajbakhsh, Tetrahedron Lett., 2004, 45, 4167; DOI: https://doi.org/10.1016/j.tetlet.2004.03.130.

    Article  Google Scholar 

  48. K. Bayram, B. Kiskan, Y. Yagci, Polym. Chem., 2021, 12, 534; DOI: https://doi.org/10.1039/D0PY01381A.

    Article  CAS  Google Scholar 

  49. J. Valdez-Rojas, H. Ríos-Guerra, A. Ramírez-Sánchez, G. García-González, C. Álvarez-Toledano, G. López-CortésJosé, R. Toscano, J. Penieres-Carrillo, Can. J. Chem., 2012, 90, 567; DOI: https://doi.org/10.1139/v2012-030.

    Article  CAS  Google Scholar 

  50. M. Papa, I. Chiarotto, M. Feroci, ChemistrySelect, 2017, 2, 3207; DOI: https://doi.org/10.1002/slct.201700507.

    Article  CAS  Google Scholar 

  51. B. Eftekhari-Sis, S. Vahdati Khajeh, O. Büyükgüngör, Synlett, 2013, 24, 977; DOI: https://doi.org/10.1055/s-0032-1316897.

    Article  CAS  Google Scholar 

  52. W. Liu, Y. Zhao, R. Xu, L. Tang, H. Hu, Chin. J. Chem., 2006, 24, 1472; DOI: https://doi.org/10.1002/cjoc.200690278.

    Article  CAS  Google Scholar 

  53. A. Singh, S. Saini, N. Singh, N. Kaur, D. Jang, RSC Adv., 2022, 12, 6659; DOI: https://doi.org/10.1039/D1RA09225A.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. R. Sabnis, Sulfur Reports, 1994, 16, 1; DOI: https://doi.org/10.1080/01961779408048964.

    Article  CAS  Google Scholar 

  55. Y. Huang, A. Dömling, Mol Divers, 2011, 15, 3; DOI: https://doi.org/10.1007/s11030-010-9229-651.

    Article  CAS  PubMed  Google Scholar 

  56. R. Sabnis, Color. Technol., 2016, 132, 49; DOI: https://doi.org/10.1111/cote.12182.

    Article  CAS  Google Scholar 

  57. K. Wang, D. Kim, A. Dömling, J. Comb. Chem., 2010, 12, 111; DOI: https://doi.org/10.1021/cc9001586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. J. Thomas, S. Jana, M. Sonawane, B. Fiey, J. Balzarini, S. Liekens, W. Dehaen, Org. Biomol. Chem., 2017, 15, 3892; DOI: https://doi.org/10.1039/C7OB00707H.

    Article  CAS  PubMed  Google Scholar 

  59. M. Abaee, S. Cheraghi, J. Sulfur Chem., 2014, 35, 261; DOI: https://doi.org/10.1080/17415993.2013.860141.

    Article  CAS  Google Scholar 

  60. M. El-Borai, H. Rizk, S. Ibrahim, A. Fares, J. Heterocycl. Chem., 2019, 56, 2787; DOI: https://doi.org/10.1002/jhet.3658.

    Article  CAS  Google Scholar 

  61. K. Kavitha, D. Srikrishna, P. Dubey, P. Aparna, J. Sulfur Chem., 2019, 40, 195; DOI: https://doi.org/10.1080/17415993.2018.1556275.

    Article  CAS  Google Scholar 

  62. F. Javadi, R. Tayebee, Micropor. Mesopor. Mater., 2016, 231, 100; DOI: https://doi.org/10.1016/j.micromeso.2016.05.025.

    Article  CAS  Google Scholar 

  63. Y. Han, W. Tang, C. Yan, Tetrahedron Lett., 2014, 55, 1441; DOI: https://doi.org/10.1016/j.tetlet.2014.01.043.

    Article  CAS  Google Scholar 

  64. T. Nguyen, D. Mac, P. Retailleau, J. Org. Chem., 2021, 86, 9418; DOI: https://doi.org/10.1021/acs.joc.1c00740.

    Article  CAS  PubMed  Google Scholar 

  65. D. Priebbenow, C. Bolm, Chem. Soc. Rev., 2013, 42, 7870; DOI: https://doi.org/10.1039/c3cs60154d.

    Article  CAS  PubMed  Google Scholar 

  66. Z. Puterova, A. Krutošíková, D. Végh, Arkivoc, 2010, i, 209; DOI: https://doi.org/10.3998/ark.5550190.0011.105.

    Article  Google Scholar 

  67. F. Agnimonhan, L. Ahoussi, S. Kpoviessi, F. Gbaguidi, C. Kapanda, M. Moudachirou, J. Poupaert, G. Accrombessi, Int. J. Biol. Chem. Sci., 2014, 8, 386; DOI: https://doi.org/10.4314/ijbcs.v8i1.32.

    Article  Google Scholar 

  68. M. Carmack, J. Heterocycl. Chem., 1989, 26, 1319; DOI: https://doi.org/10.1002/jhet.5570260518.

    Article  CAS  Google Scholar 

  69. A. Kale, Y. Tayade, S. Mahale, R. Patil, S. Dalal, Tetrahedron, 2019, 75, 130575; DOI: https://doi.org/10.1016/j.tet.2019.130575.

    Article  Google Scholar 

  70. B. Eftekhari-Sis, S. Vahdati-Khajeh, S. Amini, M. Zirak, M. Saraei, J. Sulfur Chem., 2013, 34, 464; DOI: https://doi.org/10.1080/17415993.2012.757614.

    Article  CAS  Google Scholar 

  71. N. P. Tarasova, A. A. Zanin, P. S. Sobolev, E. G. Krivoborodov, Dokl. Chem., 2017, 473, 78; DOI: https://doi.org/10.1134/S0012500817040073.

    Article  CAS  Google Scholar 

  72. N. P. Tarasova, Ya. O. Mezhuev, A. A. Zanin, E. G. Krivoborodov, Dokl. Chem., 2019, 484, 8; DOI: https://doi.org/10.1134/S0012500819010051.

    Article  CAS  Google Scholar 

  73. N. Tarasova, E. Krivoborodov, A. Zanin, Y. Mezhuev, Pure Appl. Chem., 2019, 93, 29; DOI: https://doi.org/10.1515/pac-2019-0804.

    Article  Google Scholar 

  74. N. Tarasova, E. Krivoborodov, A. Egorova, A. Zanin, L. Glukhov, I. Toropygin, Y. Mezhuev, Pure Appl. Chem., 2020, 92, 1297; DOI: https://doi.org/10.1515/pac-2019-1211.

    Article  CAS  Google Scholar 

  75. B. Eichinger, E. Wimmer, J. Pretorius, Macromol. Symp., 2001, 171, 45; DOI: https://doi.org/10.1002/1521-3900(200106)171:1<45::aid-masy45>3.0.co;2-n.

    Article  CAS  Google Scholar 

  76. N. Tarasova, E. Krivoborodov, A. Zanin, A. I. Toropygin, E. Pascal, V. Dyatlov, Y. Mezhuev, Macromol. Res., 2021, 29, 847; DOI: https://doi.org/10.1007/s13233-021-9104-6.

    Article  CAS  Google Scholar 

  77. N. Tarasova, A. Zanin, E. Krivoborodov, M. Motyakin, I. Levina, V. Dyatlov, I. Toropygin, V. Dyakonov, Y. Mezhuev, Green Chem. Lett. Rev., 2021, 14, 435; DOI: https://doi.org/10.1080/17518253.2021.1926550.

    Article  CAS  Google Scholar 

  78. N. Tarasova, E. Krivoborodov, A. Zanin, E. Pascal, I. Toropygin, A. Artyukhov, S. Muradyan, Y. Mezhuev, Gels, 2022, 8, 136; DOI: https://doi.org/10.3390/gels8020136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. N. Tarasova, A. Zanin, E. Krivoborodov, I. Toropygin, E. Pascal, Y. Mezhuev, Polymers, 2021, 13, 1806; DOI: https://doi.org/10.3390/polym13111806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. E. G. Krivoborodov, A. A. Zanin, E. P. Novikova, Ya. O. Mezhuev, Russ. Chem. Bull., 2020, 69, 986; DOI: https://doi.org/10.1007/s11172-020-2859-7.

    Article  CAS  Google Scholar 

  81. V. Purohit, M. Pięta, J. Pietrasik, C. Plummer, Polym. Chem., 2022; DOI: https://doi.org/10.1039/D2PY00831A.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Tarasova.

Additional information

Tarasova Nataliya Pavlovna, born in 1948, Doctor of Chemistry, Corresponding Member of the Russian Academy of Sciences, Professor, Director of the Institute of Chemistry and Problems of Sustainable Development of the D. Mendeleev University of Chemical Technology of Russia, candidate for academician of the Russian Academy of Sciences in the elections in 2022, specialist in high energy chemistry, environmental chemistry and chemical aspects of environmental management, author of 462 scientific publications, including 30 textbooks, manuals, and monographs and 11 author’s certificates and patents. She carried out fundamental research on the kinetics and mechanism of polymerization and copolymerization of elemental phosphorus and sulfur in various media with initiation of the processes by high-energy radiation and microwave radiation; she proposed a methodology for the one-stage synthesis of stabilized forms of polymeric phosphorus, which exhibit stereospecific reactivity in organophosphorus syntheses and have high thermal and chemical stability; she developed methodology for determining the chemical footprint to assess the impact of chemicals on the environment and humans. N. P. Tarasova is a Honored Worker of the Higher School of the Russian Federation, Chairholder of the UNESCO Chair in Green Chemistry for Sustainable Development, member of the Bureau of the Division of Chemistry and Materials Sciences of RAS, a number of scientific councils of the RAS, Chair of the National Committee of Russian Chemists, vice-president of the Russian Chemical Society named after D. I. Mendeleev, a titular member of IUPAC. She was awarded the Order of the Badge of Honor, the medal “For Services to the Fatherland” II degree. She is a honorary doctor of Bowling Green State University (USA), Honorary Fellow of the Royal Society of Chemistry, a member of the editorial boards of the journals Russian Chemical Reviews, Pure and Applied Chemistry, Green Chemistry, etc.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 2, pp. 415–424, February, 2023.

No human or animal subjects were used in this research.

The authors declare no competing interests.

The review was prepared under the financial support of the Ministry of Science and Higher Education of the Russian Federation as a part of the state task (project No. FSSM-2020-0004).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasova, N.P., Krivoborodov, E.G. & Mezhuev, Y.O. Nucleophilic activation of the sulfur S8 cyclic form as a green chemistry tool. Russ Chem Bull 72, 415–424 (2023). https://doi.org/10.1007/s11172-023-3809-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3809-9

Key words

Navigation