Skip to main content
Log in

A new approach for the acceleration of large-scale serial quantum chemical calculations of docking complexes

  • Brief Communications
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A new approach to radical accelerate large-scale quantum chemical calculations of docking complexes, which require large computational times, is proposed. It takes into account the local nature of protein interaction with ligands and is based on a formation of special groups of atoms, which include the compactly located ligands and the protein atoms surrounding them. The procedure based on this approach allowed more than twice to reduce the time of a very resource-consuming calculation with respect to our previous high-speed semi-empirical method without a noticeable decrease in accuracy and provided a level of the time consumption appropriate for the large-scale serial calculations of such complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. D. Mucs, R. A. Bryce, Expert Opin. Drug Discov., 2013, 8: 263.

    Article  CAS  PubMed  Google Scholar 

  2. O. Caldararu, M. A. Olsson, C. Riplinger, F. Neese, U. Ryde, J. Comput.-Aid. Molec. Design, 2017, 31: 87.

    Article  CAS  Google Scholar 

  3. I. I. Baskin, V. A. Palyulin, N. S. Zefirov, Russ. Chem. Rev., 2009, 78: 495.

    Article  CAS  Google Scholar 

  4. A. Cavalli, P. Carloni, M. Recanatini, Chem. Rev., 2006, 106: 3497.

    Article  CAS  PubMed  Google Scholar 

  5. I. G. Tikhonova, I. I. Baskin, V. A. Palyulin, N. S. Zefirov, Russ. Chem. Bull. (Int. Ed.), 2004, 53: 1335.

    Article  CAS  Google Scholar 

  6. A. V. Sulimov, D. C. Kutov, E. V. Katkova, V. B. Sulimov, Adv. Bioinform., 2017, Article ID 7167691; DOI. org/10.1155/2017/7167691.

    Google Scholar 

  7. N. D. Yilmazer, M. Korth, Int. J. Molec. Sci., 2016, 17: 742.

    Article  CAS  Google Scholar 

  8. K. M. Merz, Jr., Acc. Chem. Res., 2014, 47: 280.

    Google Scholar 

  9. P. Soderhjelm, J. Kongsted, S. Genheden, U. Ryde, Interdisciplin. Sci. Comput. Life Sci., 2010, 2: 21.

    Article  Google Scholar 

  10. Y. Q. Jing, K. L. Han, Expert Opin. Drug Discov., 2010, 5: 33.

    Article  CAS  PubMed  Google Scholar 

  11. M. J. Phipps, T. Fox, C. S. Tautermann, C. K. Skylaris, J. Chem. Theory Comput., 2017, 13: 1837.

    Article  CAS  PubMed  Google Scholar 

  12. M. A. Olsson, P. Soderhjelm, U. Ryde, J. Comput. Chem., 2016, 37: 1589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. A. A. Adeniyi, M. E. S. Soliman, Drug Discovery Today, 2017, 22: 1216.

    Article  CAS  PubMed  Google Scholar 

  14. N. D. Yilmazer, M. Korth, Comput. Struct. Biotechnol. J., 2015, 13: 169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. A. Pecina, R. Meier, J. Fanfrlik, M. Lepsik, J. Rezac, P. Hobza, C. Baldauf, Chem. Comm., 2016, 52: 3312.

    Article  CAS  PubMed  Google Scholar 

  16. M. Lepsik, J. Rezac, M. Kolar, A. Pecina, P. Hobza, J. Fanfrlik, ChemPlusChem, 2013, 78: 921.

    Article  CAS  Google Scholar 

  17. A. S. Christensen, T. Kubar, Q. Cui, M. Elstner, Chem. Rev., 2016, 116: 5301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. M. A. Olsson, P. Soderhjelm, U. J. Ryde, Comput. Chem., 2016, 37: 1589.

    Article  CAS  Google Scholar 

  19. C. Barberot, J. C. Boisson, S. Gerard, H. Khartabil, E. Thiriot, G. Monard, E. Henon, Comput. Theor. Chem., 2014, 1028: 7.

    Article  CAS  Google Scholar 

  20. J. J. P. Stewart, J. Mol. Model., 2013, 19: 1.

    Article  CAS  PubMed  Google Scholar 

  21. J. Hostas, J. Rezac, P. Hobza, Chem. Phys. Lett., 2013, 2–569: 161.

    Article  CAS  Google Scholar 

  22. N. A. Anikin, A. S. Mendkovich, M. B. Kuzminskiy, A. M. Andreev, Russ. Chem. Bull. (Int. Ed.), 2008, 57: 428.

    Article  CAS  Google Scholar 

  23. N. A. Anikin, A. M. Andreev, M. B. Kuz’minskii, A. S. Mendkovich, Russ. Chem. Bull. (Int. Ed.), 2008, 57: 1793.

    Article  CAS  Google Scholar 

  24. H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, P. E. Bourne, The Protein Data Bank. Nucleic Acids Res., 2000, 28: 235.

    Article  CAS  PubMed  Google Scholar 

  25. R. Wang, X. Fang, Y. Lu., S. Wang, J. Med. Chem., 2004, 47: 2977.

    Article  CAS  PubMed  Google Scholar 

  26. M. Elstner, Theor. Chim. Acta, 2006, 116: 316.

    Article  CAS  Google Scholar 

  27. N. A. Anikin, V. L. Bugaenko, M. B. Kuz’minskii, A. S. Mendkovich, Russ. Chem. Bull. (Int. Ed.), 2014, 63: 346.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Kuz’minskii.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1100–1103, June, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anikin, N.A., Andreev, A.M., Kuz’minskii, M.B. et al. A new approach for the acceleration of large-scale serial quantum chemical calculations of docking complexes. Russ Chem Bull 67, 1100–1103 (2018). https://doi.org/10.1007/s11172-018-2186-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-018-2186-4

Key words

Navigation