Skip to main content
Log in

Lithium deintercalation/intercalation processes in cathode materials based on lithium iron phosphate with the olivine structure

  • Reviews
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

This review describes the current state of the studies of lithium deintercalation/intercalation processes in cathode materials based on lithium iron phosphate with olivine structure. The limiting factors of LiFePO4 charge/discharge processes, as well as the main methods for their acceleration are considered. A partial replacement of iron cations in the structure improves the electrochemical characteristics of the cathode materials, including the discharge capacity, charge/discharge rate, and, in some cases, changes the charge/discharge mechanism. The use of nanoscale phosphate LiFePO4 with the olivine structure considerably increases the charge/discharge rate of cathode materials based on it by reducing the diffusion path length. Methods for LiFePO4 surface modification are considered. Particular attention is paid to the development of composite materials with electron-conducting additives. Combining of various approaches to the modification of the material in question makes it possible to obtain materials with a discharge capacity close to the theoretical value (170 mA h g–1) at a low charge/discharge rate and to considerably increase its capacity at high charge and discharge currents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Skundin, O. N. Efimov, O. V. Yarmolenko, Russ. Chem. Rev., 2002, 71, 329.

    CAS  Google Scholar 

  2. M. S. Whittingham, Chem. Rev., 2004, 104, 4271.

    CAS  Google Scholar 

  3. K. Zaghib, A. Guerfi, P. Hovington, A. Vijh, M. Trudeau, A. Mauger, J. B. Goodenough, C. M. Julien, J. Power Sources, 2013, 232, 357.

    CAS  Google Scholar 

  4. B. Scrosati, J. Garche, J. Power Sources, 2010, 195, 2419.

    CAS  Google Scholar 

  5. A. B. Yaroslavtsev, T. L. Kulova, A. M. Skundin, Russ. Chem. Rev., 2015, 84, 826.

    CAS  Google Scholar 

  6. C. Wei, W. He, X. Zhang, J. Shen, J. Ma, N. J. Chem., 2016, 40, 2984.

    CAS  Google Scholar 

  7. M. S. Whittingham, Chem. Rev., 2014, 114, 11414.

    CAS  Google Scholar 

  8. J. Warner, The Handbook of Lithium-Ion Battery Pack Design Chemistry, Components, Types and Terminology, 2015, Chapter 7, p. 65.

    Google Scholar 

  9. Zh. Pei, Zh. Li, X. Zheng, J. Nanosci. Nanotechnol., 2016, 16, 9028.

    CAS  Google Scholar 

  10. A. Eftekhari, Micropor. Mesopor. Mater., 2017, 243, 355.

    CAS  Google Scholar 

  11. A. A. Vashman, K. I. Petrov, Funktsionalńyye neorganicheskiye soyedineniya litiya[Functional Inorganic Lithium Compounds], Energoatomizdat, Moscow, 1996, 208 pp. (in Russian).

    Google Scholar 

  12. A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, J. Electrochem. Soc., 1997, 144, 1188.

    CAS  Google Scholar 

  13. Zh. Yang, Y. Dai, Sh. Wang, J. Yu, J. Mater. Chem. A, 2016, 4, 18210.

    CAS  Google Scholar 

  14. A. Eftekhari, J. Power Sources, 2017, 343, 395.

    CAS  Google Scholar 

  15. M. S. Islam, D.J. Driscoll, C. A. J. Fisher, P. R. Slater, Chem. Mater., 2005, 17, 5085.

    CAS  Google Scholar 

  16. D. Jugović, D. Uskoković, J. Power Sources, 2009, 190, 538.

    Google Scholar 

  17. M. S. Islam, C. A. J. Fisher, Chem. Soc. Rev., 2014, 43, 185.

    CAS  Google Scholar 

  18. A. Yamada, S. C. Chung, K. Hinokuna, J. Electrochem. Soc., 2001, 148, A224.

    CAS  Google Scholar 

  19. H. Huang, S. C. Yin, L. F. Nazar, Electrochem. Solid-State Lett.,2001, 4, A170.

    CAS  Google Scholar 

  20. G. Arnold, J. Garche, R. Hemmer, S. Strobele, C. Vogler, M. Wohlfahrt-Mehrens, J. Power Sources, 2003, 119—121, 247.

    Google Scholar 

  21. J. Fergus, J. Power Sources, 2010, 195, 939.

    CAS  Google Scholar 

  22. R. Amin, J. Maier, P. Balaya, D. Chen, C. Lin, Solid State Ion., 2008, 179, 1683.

    CAS  Google Scholar 

  23. P. P. Prosini, M. Lisi, D. Zane, M. Pasquali, Solid State Ion., 2002, 148, 45.

    CAS  Google Scholar 

  24. H. Liu, C. Li, H. Zhang, L. Fu, Y. Wu, H. Wu, J. Power Sources, 2006, 159, 717.

    CAS  Google Scholar 

  25. K. Tang, X. Yu, J. Sun, H. Li, X. Huang, Electrochim. Acta, 2011, 56, 4869.

    CAS  Google Scholar 

  26. S. Zhang, J. Zhang, S. Xu, X. Yuan, B. He, Electrochim. Acta, 2013, 88, 287.

    CAS  Google Scholar 

  27. C. Benoit, S. Franger, J. Solid State Electrochem., 2008, 12, 987.

    CAS  Google Scholar 

  28. D. V. Safronov, S. A. Novikova, A. M. Skundin, A. B. Yaroslavtsev, Inorg. Mater., 2012, 48, 57.

    CAS  Google Scholar 

  29. Yu. A. Dobrovolśkiy, O. V. Bushkova, K. K. Denśhchikov, E. A. Chudinov, Al´ternativnaya Energetika i Ekologiya (ISJAEE)[Alternative Energy and Ecology (ISJAEE)], 2016, 1—2, 64 (in Russian).

    Google Scholar 

  30. Ch. Delacourt, Ph. Poizot, J.-M. Tarascon, Chr. Masquelier, Nature Mater., 2005, 4, 254.

    CAS  Google Scholar 

  31. S. Franger, C. Benoit, C. Bourbon, F. Le Cras, J. Phys. Chem. Solids, 2006, 67, 1338.

    CAS  Google Scholar 

  32. J. B. Goodenough, Y. Kim, J. Power Sources, 2011, 196, 6688.

    CAS  Google Scholar 

  33. D. V. Safronov, I. Y. Pinus, I. A. Profatilova, V. A. Tarnopolśkii, A. M. Skundin, A. B. Yaroslavtsev, Inorg. Mater., 2011, 47, 303.

    CAS  Google Scholar 

  34. X. Li, M. Xiao, S.-Y. Choe, W. T. Joe, Electrochim. Acta, 2015, 155, 447.

    CAS  Google Scholar 

  35. L. Laffont, C. Delacourt, P. Gibot, M. Y. Wu, P. Kooyman, C. Masquelier, J. M. Tarascon, Chem. Mater., 2006, 18, 5520.

    CAS  Google Scholar 

  36. A. B. Yaroslavtsev, Russ. Chem. Rev., 1997, 66, 579.

    Google Scholar 

  37. A. B. Yaroslavtsev, Khimiya tverdogo tela[Solid State Chemistry], Nauchnyi mir, Moscow, 2009, 328 pp. (in Russian).

    Google Scholar 

  38. A. Yamada, H. Koizumi, Sh.-I. Nishimura, N. Sonoyama, R. Kanno, M. Yonemura, T. Nakamura, Y. Kobayashi, Nat. Mater., 2006, 5, 357.

    CAS  Google Scholar 

  39. C. Delmas, M. Maccario, L. Croguennec, F. Le Cras, F. Weill, Nat. Mater., 2008, 7, 665.

    CAS  Google Scholar 

  40. G. Brunetti, D. Robert, P. Bayle-Guillemaud, J. L. Rouviere, E. F. Rauch, J. F. Martin, J. F. Colin, F. Bertin, C. Cayron, Chem. Mater., 2011, 23, 4515.

    CAS  Google Scholar 

  41. F. Kreger, Khimiya nesovershennykh ionnykh kristallov[Chemistry of Imperfect Ionic Crystals], Mir, Moscow, 1969, 654 pp. (in Russian).

    Google Scholar 

  42. D. Wang, H. Li, S. Shi, X. Huang, L. Chen, Electrochim. Acta., 2005, 50, 2955.

    CAS  Google Scholar 

  43. M. Wagemaker, B. L. Ellis, D. Lutzenkirchen-Hecht, F. M. Mulder, L. F. Nazar, Chem. Mater., 2008, 20, 6313.

    CAS  Google Scholar 

  44. T. Nakamura, Y. Miwa, M. Tabuchi, Y. Yamada, J. Electrochem. Soc., 2006, 153, A1108.

    CAS  Google Scholar 

  45. M. R. Roberts, G. Vitins, J. R. Owen, J. Power Sources, 2008, 179, 754.

    CAS  Google Scholar 

  46. D. V. Safronov, S. A. Novikova, T. L. Kulova, A. M. Skundin, A. B. Yaroslavtsev, Inorg. Mater., 2012, 48, 513.

    CAS  Google Scholar 

  47. Y.-H. Ding, P. Zhang, Trans. Nonferrous Met. Soc. China, 2012, 22, s153.

    Google Scholar 

  48. S. Novikova, S. Yaroslavtsev, V. Rusakov, T. Kulova, A. Skundin, A. Yaroslavtsev, Electrochim. Acta, 2014, 122, 180.

    CAS  Google Scholar 

  49. H. Gao, L. Jiao, J. Yanga, Z. Qi, Y. Wang, H. Yuan, Electrochim. Acta, 2013, 97, 143.

    CAS  Google Scholar 

  50. R.-R. Zhao, B.-Y. Lan, H.-Y. Chen, G.-Z. Ma, Ionics, 2012, 18, 873.

    CAS  Google Scholar 

  51. H. Liu, Q. Cao, L. J. Fu, C. Li, Y. P. Wu, H. Q. Wu, Electrochem. Commun., 2006, 8, 1553.

    CAS  Google Scholar 

  52. Y. Ge, X. Yan, J. Liu, X. Zhang, J. Wang, X. He, R. Wang, H. Xie, Electrochim. Acta, 2010, 55, 5886.

    CAS  Google Scholar 

  53. Örnek, E. Bulut, M. Can, M. Özacar, J. Solid State Electrochem., 2013, 17, 3101.

    Google Scholar 

  54. D. Wang, Z. Wang, X. Huang, L. Chen, J. Power Sources, 2005, 146, 580.

    CAS  Google Scholar 

  55. Örnek, O. Efe, Electrochim. Acta, 2015, 166, 338.

    Google Scholar 

  56. Y. Mi, Ch. Yang, Z. Zuo, L. Qi, Ch. Tang, W. Zhang, H. Zhou, Electrochim. Acta, 2015, 176, 642.

    CAS  Google Scholar 

  57. S. Novikova, S. Yaroslavtsev, V. Rusakov, A. Chekannikov, T. Kulova, A. Skundin, A. Yaroslavtsev, J. Power Sources, 2015, 300, 444.

    CAS  Google Scholar 

  58. W. Liu, Q. Huang, G. Hu, J. Alloys Compd., 2015, 632, 185.

    CAS  Google Scholar 

  59. Q. Liu, W. Liu, D. Li, Z. Wang, Mater. Lett., 2016, 162, 87.

    CAS  Google Scholar 

  60. V. Radhamani, C. Karthik, R. Ubic, M. S. R. Rao, C. Sudakar, Scr. Mater., 2013, 69, 96.

    CAS  Google Scholar 

  61. Y. Gu, X. Zhang, Sh. Lu, D. Jiang, A. Wu, Solid State Ionics, 2015, 269, 30.

    CAS  Google Scholar 

  62. C. M. Ban, W. J. Yin, H. W. Tang, S. H. Wei, Y. F. Yan, A. C. Dillon, Adv. Energy Mater., 2012, 2, 1028.

    CAS  Google Scholar 

  63. W. Yang, Y. Bi, Y. Qin, Y. Liu, X. Zhang, B. Yang, Q. Wu, D. Wang, S. Shi, J. Power Sources, 2015, 275, 785.

    CAS  Google Scholar 

  64. W. Xiang, E.-H. Wang, M.-Zh. Chen, H.-H. Shen, Sh.-L. Chou, H. Chen, X.-D. Guoa, B.-H. Zhong, X. Wang, Electrochim. Acta, 2015, 178, 353.

    CAS  Google Scholar 

  65. X. Zhou, Y. Xie, Y. Deng, X. Qin, G. Chen, J. Mater. Chem. A, 2015, 3, 996.

    CAS  Google Scholar 

  66. X. Zhou, Y. Deng, L. Wan, X. Qin, G. Chen, J. Power Sources, 2014, 265, 223.

    CAS  Google Scholar 

  67. O. A. Drozhzhin, V. D. Sumanov, O. M. Karakulina, A. M. Abakumov, J. Hadermann, A. N. Baranov, K. J. Stevenson, E. V. Antipov, Electrochim. Acta, 2016, 191, 149.

    CAS  Google Scholar 

  68. S. Y. Chung, J. T. Bloking, Y. M. Chiang, Nat. Mater., 2002, 1, 123.

    CAS  Google Scholar 

  69. Y.-D. Cho, G. T.-K. Fey, H.-M. Kao, J. Solid State Electrochem., 2008, 12, 815.

    CAS  Google Scholar 

  70. S. Shi, L. Liu, C. Ouyang, D.-S. Wang, Z. Wang, L. Chen, X. Huang, Phys. Rev. B, 2003, 68, 195108.

    Google Scholar 

  71. M. Abbate, S. Lala, L. Montoro, J. Rosolen, Electrochem. Solid-State Lett., 2005, 8, A288.

    CAS  Google Scholar 

  72. H. Ch. Shin, S. B. Park, H. Jang, K. Y. Chung, W. Cho, Ch. S. Kim, B. W. Cho, Electrochim. Acta, 2008, 53, 7946.

    CAS  Google Scholar 

  73. A. Kulka, D. Baster, M. Dudek, M. Kielbasa, A. Milewska, W. Zajac, K. Swierczek, J. Molenda, J. Power Sources, 2013, 244, 565.

    CAS  Google Scholar 

  74. R. Kapaev, S. Novikova, T. Kulova, A. Skundin, A. Yaroslavtsev, J. Solid State Electrochem., 2015, 19, 2793.

    CAS  Google Scholar 

  75. A. Kulka, A. Braun, T.-W. Huang, A. Wolska, M. T. Klepka, A. Szewczyk, D. Baster, W. Zajac, K. Świerczek, J. Molenda, Solid State Ionics, 2015, 270, 33.

    CAS  Google Scholar 

  76. C. A. Fisher, V. M. Hart Prieto, M. S. Islam, Chem. Mater., 2008, 20, 5907.

    CAS  Google Scholar 

  77. N. Meethong, Y.-H. Kao, W. C. Carter, Y.-M. Chiang, Chem. Mater., 2010, 22, 1088.

    CAS  Google Scholar 

  78. J. Ma, B. Li, H. Du, Ch. Xu, F. Kang, Electrochim. Acta, 2011, 56, 7385.

    CAS  Google Scholar 

  79. J. Hong, C. Wang, U. Kasavajjula, J. Power Sources, 2006, 162, 1289.

    CAS  Google Scholar 

  80. J. Molenda, W. Ojczyk, J. Marzec, J. Power Sources, 2007, 174, 689.

    CAS  Google Scholar 

  81. N. V. Kosova, E. T. Devyatkina, A. I. Ancharov, A. V. Markov, D. D. Karnaushenko, V. K. Makukha, Solid State Ionics, 2012, 225, 564.

    CAS  Google Scholar 

  82. D. B. Ravnsbaek, K. Xiang, W. Xing, O. J. Borkiewicz, K. M. Wiaderek, P. Gionet, K. W. Chapman, P. J. Chupas, Y.-M. Chiang, Nano Lett., 2014, 14, 1484.

    CAS  Google Scholar 

  83. Y. C. Chen, J. M. Chen, C. H. Hsu, J. W. Yeh, H. C. Shih, Y. S. Chang, H. S. Sheu, J. Power Sources, 2009, 189, 790.

    CAS  Google Scholar 

  84. L.-X. Yuan, Z.-H. Wang, W.-X. Zhang, X.-L. Hu, J.-T. Chen, Y.-H. Huang, J. B. Goodenough, Energy Environ. Sci., 2011, 4, 269.

    CAS  Google Scholar 

  85. M. Wagemaker, D. P. Singh, W. J. Borghols, U. Lafont, L. Haverkate, V. K. Peterson, F. M. Mulder, J. Am. Chem. Soc., 2011, 133, 10222.

    CAS  Google Scholar 

  86. Y. Wang, Y. Wang, E. Hosono, K. Wang, H. Zhou, Angew. Chem., Int. Ed., 2008, 47, 7461.

    CAS  Google Scholar 

  87. K. Christmann, Introduction to Surface Physical Chemistry, Springer, Darmstadt, Steinkopff, New York, 1991.

    Google Scholar 

  88. N. F. Uvarov, V. V. Boldyrev, Russ. Chem. Rev., 2001, 70, 265.

    CAS  Google Scholar 

  89. J. Maier, Nat. Mater., 2005, 4, 805.

    CAS  Google Scholar 

  90. J. Maier, Solid State Ionics, 2003, 157, 327.

    CAS  Google Scholar 

  91. A. B. Yaroslavtsev, Nanotechnol. Russ., 2012, 7, 437.

    Google Scholar 

  92. T. Kurita, J. Lu, M. Yaegashi, Y. Yamada, Sh.-I. Nishimura, T. Tanaka, T. Uzumaki, A. Yamada, J. Power Sources, 2012, 214, 166.

    CAS  Google Scholar 

  93. Y. Zhang, L. Wu, J. Zhao, W. Yu, J. Electroanal. Chem., 2014, 719, 1.

    CAS  Google Scholar 

  94. B. H. Rong, Y. W. Lu, X. W. Liu, Q. L. Chen, K. Tang, H. Zh. Yang, X. Y. Wu, F. Shen, Y. B. Chen, Y. F. Tang, Y. F. Chen, Nano Energy, 2014, 6, 173.

    CAS  Google Scholar 

  95. C. M. Doherty, R. A. Caruso, B. M. Smarsly, C. J. Drummond, Chem. Mater., 2009, 21, 2895.

    CAS  Google Scholar 

  96. S. W. Oh, S.-T. Myung, H. J. Bang, C. S. Yoon, K. Amine, Y.-K. Sun, Electrochem. Solid-State Lett., 2009, 12, A181.

    CAS  Google Scholar 

  97. D. P. Singh, F. M. Mulder, A. M. Abdelkader, M. Wagemaker, Adv. Energy Mater., 2013, 3, 572.

    CAS  Google Scholar 

  98. K.-X. Wang, X.-H. Li, J.-Sh. Chen, Adv. Mater., 2015, 27, 527.

    CAS  Google Scholar 

  99. D. Morgan, A. Van der Ven, G. Ceder, Electrochem. Solid State Lett., 2004, 7, A30.

    CAS  Google Scholar 

  100. K. S. Park, J. T. Son, H. T. Chung, S. J. Kim, C. H. Lee, H. G. Kim, Electrochem. Commun., 2003, 5, 839.

    CAS  Google Scholar 

  101. R. R. Kapaev, S. A. Novikova, T. L. Kulova, A. M. Skundin, A. B. Yaroslavtsev, Nanotechnol. Russ., 2016, 11, 757.

    CAS  Google Scholar 

  102. M. K. Devaraju, I. Honma, Adv. Energy Mater., 2012, 2, 284.

    CAS  Google Scholar 

  103. Y. Zhao, L. Peng, B. Liu, G. Yu, Nano Lett., 2014, 14, 2849.

    CAS  Google Scholar 

  104. M. Zhang, R. Liu, F. Feng, S. Liu, Q. Shen, J. Phys. Chem. C., 2015, 119, 12149.

    CAS  Google Scholar 

  105. C. Nan, J. Lu, C. Chen, Q. Peng, Y. Li, J. Mater. Chem., 2011, 21, 9994.

    CAS  Google Scholar 

  106. L. Wang, X. He, W. Sun, J. Wang, Y. Li, S. Fan, Nano Lett., 2012, 12, 5632.

    CAS  Google Scholar 

  107. X. Qin, X. Wang, H. Xiang, J. Xie, J. Li, Y. Zhou, J. Phys. Chem. C, 2010, 114, 16806.

    CAS  Google Scholar 

  108. Y.-H. Huang, J. B. Goodenough, Chem. Mater., 2008, 20, 7237.

    CAS  Google Scholar 

  109. A. Fedorková, R. Ori áková, A. Ori ák, I. Taliana, A. Heile, H.-D. Wiemhöfer, D. Kaniansky, H. F. Arlinghaus, J. Power Sources, 2010, 195, 3907.

    Google Scholar 

  110. N. Vicente, M. Haro, D. Cíntora-Juárez, C. PérezVicente, J. Luis Tirado, Sh. Ahmad, G. Garcia-Belmonte, Electrochim. Acta, 2015, 163, 323.

    CAS  Google Scholar 

  111. H. Li, H. Zhou, Chem. Commun., 2012, 48, 1201.

    CAS  Google Scholar 

  112. G. Kucinskis, G. Bajars, J. Kleperis, J. Power Sources, 2013, 240, 66.

    CAS  Google Scholar 

  113. Y. Su, Y. Liu, P. Liu, D. Wu, X. Zhuang, F. Zhang, X. Feng, Angew. Chem., Int. Ed., 2015, 54, 1812.

    CAS  Google Scholar 

  114. K. Wu, G. Hun, K. Dun, Zh. Peng, Y. Cao, Ceram. Int., 2015, 41, 13867.

    CAS  Google Scholar 

  115. G. Wang, Zh. Ma, G. Shao, L. Kong, W. Gao, J. Power Sources, 2015, 291, 209.

    CAS  Google Scholar 

  116. Z.-Y. Chen, H.-L. Zhu, S. Ji, R. Fakir, V. Linkov, Solid State Ionics, 2008, 179, 1810.

    CAS  Google Scholar 

  117. G. Liang, L. Wang, X. Ou, X. Zhao, S. Xu, J. Power Sources, 2008, 184, 538.

    CAS  Google Scholar 

  118. J. Wang, Zh. Shao, H. Ru, Ceram. Int., 2014, 40, 6979.

    CAS  Google Scholar 

  119. Zh. Ma, Y. Fan, G. Shao, G. Wang, J. Song, T. Liu, ACS Appl. Mater. Interfaces, 2015, 7, 2937.

    Google Scholar 

  120. L. Dimesso, C. Spanheimer, S. Jacke, W. Jaegermann, J. Power Sources, 2011, 196, 6729.

    CAS  Google Scholar 

  121. G. T.-K. Fey, T.-L. Lu, J. Power Sources, 2008, 178, 807.

    CAS  Google Scholar 

  122. M. Kuzmanović, D. Jugovića, M. Mitrić, B. Jokić, N. Cvjetićanin, D. Uskoković, Ceram. Int., 2015, 6753.

  123. Örnek, E. Bulut, M. Özacar, Ceram. Int., 2014, 40, 15727.

    Google Scholar 

  124. M. Chen, L.-L. Shao, H.-B. Yang, Q.-Y. Zhao, Zh.-Y. Yuan, Electrochim. Acta, 2015, 168, 59.

    CAS  Google Scholar 

  125. W. Jianmei, C. Feipeng, Y. Gai, W. Bo, H. Suqin, Mater. Eng., 2015, 44, 307.

    Google Scholar 

  126. D. Gryzlov, S. Novikova, T. Kulova, A. Skundin, A. Yaroslavtsev, Mater. Desing, 2016, 104, 95.

    CAS  Google Scholar 

  127. R. Kumar, R. K. Singh, R. S. Tiwari, Mater. Desing, 2016, 94, 166.

    CAS  Google Scholar 

  128. G. Ciric-Marjanovic, I. Pašti, Sl. Mentus, Prog. Mater. Sci., 2015, 69, 61.

    CAS  Google Scholar 

  129. S. V. Savilov, E. A. Arkhipova, A. S. Ivanov, K. I Maslakov, Z. Shen, S. M. Aldoshin, V. V. Lunin, Mater. Res. Bull., 2015, 69, 7.

    CAS  Google Scholar 

  130. Y. Sun, G. Ning, C. Qi, J. Li, X. Ma, C. Xu, Y. Li, X. Zhang, J. Gao, Electrochim. Acta, 2016, 190, 141.

    CAS  Google Scholar 

  131. T. Nakajima, V. Gupta, Y. Ohzawa, M. Koh, R. N. Singh, A. Tressaud, E. Durand, J. Power Sources, 2002, 104, 108.

    CAS  Google Scholar 

  132. Y.-D. Cho, G. T.-K. Fey, H.-M. Kao, J. Power Sources, 2009, 189, 256.

    CAS  Google Scholar 

  133. Y. L. Cao, L. H. Yu, T. Li, X. P. Ai, H. X. Yang, J. Power Sources, 2007, 172, 913.

    CAS  Google Scholar 

  134. K. Wang, M. Hou, Sh. Yuan, H. Yu, Y. Wang, C. Wang, Yo. Xia, Electrochem. Commun., 2015, 55, 6.

    Google Scholar 

  135. M. M. Doeff, J. D. Wilcox, R. Yu, A. Aumentado, M. Marcinek, R. Kostecki, J. Solid State Electrochem., 2008, 12, 995.

    CAS  Google Scholar 

  136. Y.-H. Nien, J. R. Carey, J.-S. Chen, J. Power Sources, 2009, 193, 822.

    CAS  Google Scholar 

  137. P. Swain, M. Viji, P. S. V. Mocherla, C. Sudakar, J. Power Sources, 2015, 293, 613.

    CAS  Google Scholar 

  138. A. Varzi, C. Ramirez-Castroc, A. Balduccic, S. Passerinia, J. Power Sources, 2015, 273, 1016.

    CAS  Google Scholar 

  139. M. K. Satam, R. Natarajan, S. Kobi, M. K. Jangid, Y. Krishnan, A. Mukhopadhyay, Scr. Materialia, 2016, 124, 1.

    CAS  Google Scholar 

  140. X. Tu, Y. Zhou, Y. Song, Appl. Surface Sci., 2017, 400, 329.

    CAS  Google Scholar 

  141. A. B. Yaroslavtsev, Rus. J. Inorg. Chem., 2000, 45, S249.

    Google Scholar 

  142. J. Jamnik, J. Maier, J. Phys. Chem Solids, 1998, 59, 1555.

    CAS  Google Scholar 

  143. J. Tudo, B. Jolibois, G. Laplace, G. Nowogrocki, F. Abraham, J. Appl. Cryst., 1978, 11, 707.

    CAS  Google Scholar 

  144. V. G. Ponomareva, V. A. Tarnopolśkii, A. B. Yaroslavtsev, E. B. Burgina, Russ. J. Inorg. Chem., 2003, 48, 955.

    Google Scholar 

  145. V. G. Ponomareva, N. F. Uvarov, G. V. Lavrova, E. F. Hairetdinov, Solid State Ionics, 1996, 90, 161.

    CAS  Google Scholar 

  146. Y. Cui, X.-L. Zhao, R.-S. Guo, J. Alloys Compd., 2010, 490, 236.

    CAS  Google Scholar 

  147. J. Lee, P. Kumar, J. Lee, B. M. Moudgil, R. K. Singh, J. Alloys Compd., 2013, 550, 536.

    CAS  Google Scholar 

  148. Y.-D. Li, Sh.-X. Zhao, C.-W. Nan, B.-H. Li, J. Alloys Compd., 2011, 509, 957.

    CAS  Google Scholar 

  149. J. Yao, F. Wu, X. Qiu, N. Li, Y. Su, Electrochim. Acta, 2011, 56, 5587.

    CAS  Google Scholar 

  150. Ch.-Ch. Yang, J.-H. Jang, J.-R. Jiang, Appl. Energy, 2016, 162, 1419.

    CAS  Google Scholar 

  151. A. Svitańko, V. Scopets, S. Novikova, A. Yaroslavtsev, Solid State Ionics, 2015, 271, 42.

    Google Scholar 

  152. G. Tan, F. Wu, L. Li, R. Chen, Sh. Chen, J. Phys. Chem. C, 2013, 117, 6013.

    CAS  Google Scholar 

  153. Sh.-H. Wu, J.-J. Shiu, J.-Y. Lin, J. Power Sources, 2011, 196, 6676.

    CAS  Google Scholar 

  154. J. Y. Xiang, J. P. Tu, L. Zhang, X. L. Wang, Y. Zhou, Y. Q. Qiao, Y. Lu, J. Power Sources, 2010, 195, 8331.

    CAS  Google Scholar 

  155. A. I. Svitańko, S. A. Novikova, T. L. Kulova, A. M. Skundin, A. B. Yaroslavtsev, Mendeleev Commun., 2015, 25, 207.

    Google Scholar 

  156. N. V. Kosova, O. A. Podgornova, I. A. Bobrikov, V. V. Kaichev, A. V. Bukhtiyarov, Mater. Sci. Eng., B, 2016, 213, 105.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Novikova.

Additional information

Based on the materials of the XX Mendeleev Congress on General and Applied Chemistry (September 26—30, 2016, Ekaterinburg, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1336—1344, August, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikova, S.A., Yaroslavtsev, A.B. Lithium deintercalation/intercalation processes in cathode materials based on lithium iron phosphate with the olivine structure. Russ Chem Bull 66, 1336–1344 (2017). https://doi.org/10.1007/s11172-017-1897-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-017-1897-2

Keywords

Navigation