Skip to main content
Log in

Highly efficient modification of DNA polymerase β under conditions of direct and sensitized activation of photoreactive DNAs. Modification of cell extract proteins

  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

dUTP and dCTP derivatives containing a 4-azido-2,3,5,6-tetrafluorobenzylideneaminooxy group were incorporated into the 3′-end of the DNA primer within complexes with the DNA-matrix as analogs of natural dTTP by virtue of catalytic activity of DNA polymerase β or endogenous DNA polymerases of the cell extract. The photoreactive DNAs synthesized in situ were used for affinity modification of DNA polymerase β and DNA-binding proteins of the cell extract. For the photoreactive DNA based on these analogs, the efficiency of formation of covalent adducts with DNA polymerase β under the highest degree of DNA complexation with the enzyme was determined. The yield of covalent DNA adducts with the enzyme was 28–47%, depending on the type of the analog. The effect of the sequence of the DNA template near the localization of the photoreactive group on the redistribution of covalent cross-links between the possible targets was demonstrated. A possibility of increasing the efficiency of DNA polymerase β modification in the presence of a substantial excess of photoreactive DNA using a sensitizer, a dUTP derivative containing a pyrene residue, was studied. When photoreactive DNA containing a 2,3,5,6-tetrafluoro-4-azidobenzoyl (FAB) group was used, about 60% of DNA polymerase β was covalently attached to DNA. Photoreactive dNTP analogs ensuring a high level of protein modification in the cell extract were found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Dezhurov, S. N. Khodyreva, N. I. Rechkunova, D. M. Kolpashchikov, O. I. Lavrik, Bioorgan. Khim., 2003, 29, 74 [Russ. J. Bioorg. Chem., 2003, 29 (Engl. Transl.)].

    Google Scholar 

  2. I. A. Drachkova, I. O. Petruseva, I. V. Safronov, G. V. Shishkin, O. I. Lavrik, and S. N. Khodyreva, Bioorgan. Khim., 2001, 27, 197 [Russ. J. Bioorg. Chem., 2001, 27 (Engl. Transl.)].

    CAS  Google Scholar 

  3. D. M. Kolpashchikov, A. L. Zakharenko, S. V. Dezhurov, N. I. Rechkunova, S. N. Khodyreva, S. Kh. Degtyarev, V. V. Litvak, and O. I. Lavrik, Bioorgan. Khim., 1999, 25, 129 [Russ. J. Bioorg. Chem., 1999, 25 (Engl. Transl.)].

    CAS  Google Scholar 

  4. I. V. Safronov, I. A. Drachkova, I. O. Petruseva, S. N. Khodyreva, M. I. Dobrikov, T. M. Ivanova, G. V. Shishkin, and O. I. Lavrik, Bioorgan. Khim., 2001, 27, 372 [Russ. J. Bioorg. Chem., 2001, 27 (Engl. Transl.)].

    CAS  Google Scholar 

  5. N. A. Lebedeva, N. I. Rechkunova, S. N. Khodyreva, A. Favre, and O. I. Lavrik, Biochem. Biophys. Res. Commun., 2002, 297, 714.

    Article  CAS  Google Scholar 

  6. N. I. Rechkunova, D. M. Kolpashchikov, N. A. Lebedeva, I. O. Petruseva, M. I. Dobrikov, S. K. Degtyarev, and O. I. Lavrik, Biokhimiya, 2000, 65, 244 [Biochemistry (Moscow), 2000, 65 (Engl. Transl.)].

    CAS  Google Scholar 

  7. D. M. Kolpashchikov, N. I. Rechkunova, M. I. Dobrikov, S. N. Khodyreva, N. A. Lebedeva, and O. I. Lavrik, FEBS Lett., 1999, 448, 141.

    Article  CAS  Google Scholar 

  8. A. L. Zakharenko, D. M. Kolpashchikov, S. N. Khodyreva, O. I. Lavrik, and L. Menendes-Arias, Biokhimiya, 2001, 66, 999 [Biochemistry (Moscow), 2001, 66 (Engl. Transl.)].

    CAS  Google Scholar 

  9. A. L. Zakharenko, S. N. Khodyreva, N. I. Rechkunova, I. V. Safronov, D. V. Pyshnyi, S. Kh. Degtyarev, and O. I. Lavrik, Biokhimiya, 1998, 63, 929 [Biochemistry (Moscow), 1998, 63 (Engl. Transl.)].

    CAS  Google Scholar 

  10. I. V. Safronov, N. V. Shcherbik, S. N. Khodyreva, V. A. Vlasov, M. I. Dobrikov, G. V. Shishkin, and O. I. Lavrik, Bioorgan. Khim., 1997, 23, 576 [Russ. J. Bioorg. Chem., 1997, 23 (Engl. Transl.)].

    CAS  Google Scholar 

  11. M. I. Dobrikov, R. Yu. Dudko, and G. V. Shishkin, Bioorgan. Khim., 1996, 22, 191 [Russ. J. Bioorg. Chem., 1996, 22 (Engl. Transl.)].

    CAS  Google Scholar 

  12. M. I. Dobrikov, R. Yu. Dudko, A. S. Levina, L. M. Khalimskaya, and G. V. Shishkin, Bioorgan. Khim., 1996, 22, 199 [Russ. J. Bioorg. Chem., 1996, 22 (Engl. Transl.)].

    Google Scholar 

  13. A. S. Levina, D. R. Tabatadze, M. I. Dobrikov, G. V. Shishkin, L. M. Khalimskaya, and V. P. Zarytova, Antisens and Nucleic Acids Drug Development, 1996, 6, 119.

    CAS  Google Scholar 

  14. T. S. Godovikova, D. M. Kolpashchikov, T. N. Orlova, V. A. Richter, T. M. Ivanova, S. L. Grochovsky, T. V. Nasedkina, L. S. Victorova, and A. I. Poletaev, Bioconjugate Chem., 1999, 10, 529.

    Article  CAS  Google Scholar 

  15. O. I. Lavrik, R. Prasad, R. W. Sobol, J. K. Horton, E. J. Ackerman, and S. H. Wilson, J. Biol. Chem., 2001, 276, 25541.

    Article  CAS  Google Scholar 

  16. O. I. Lavrik, D. M. Kolpashchikov, R. Prasad, R. W. Sobol, and S. H. Wilson, Nucleic Acids Res., 2002, 30, e73.

    Article  Google Scholar 

  17. N. A. Lebedeva, N. I. Rechkunova, S. V. Dezhurov, S. N. Khodyreva, A. Favre, and O. I. Lavrik, Biokhimiya, 2003, 68, 476 [Biochemistry (Moscow), 2003, 68 (Engl. Transl.)].

    CAS  Google Scholar 

  18. S. Doerhoefer, S. Khodyreva, I. V. Safronov, W. A. Wlassoff, R. Anarbaev, O. I. Lavrik, and E. Holler, Microbiology, 1998, 144, 3181.

    Article  CAS  Google Scholar 

  19. G. Mass, T. Nethanel, O. I. Lavrik, M. S. Wold, and G. Kaufmann, Nucleic Acids Res., 2001, 29, 3892.

    Article  CAS  Google Scholar 

  20. S. Biade, R. W. Sobol, S. H. Wilson, and Y. Matsumoto, J. Biol. Chem., 1998, 273, 898.

    Article  CAS  Google Scholar 

  21. W. A. Wlassoff, M. I. Dobrikov, I. V. Safronov, R. Y. Dudko, V. S. Bogachev, V. V. Kandaurova, G. V. Shishkin, G. M. Dymshits, and O. I. Lavrik, Bioconjugate Chem., 1995, 6, 352.

    Article  CAS  Google Scholar 

  22. N. A. Lebedeva, D. M. Kolpashchikov, N. I. Rechkunova, S. N. Khodyreva, and O. I. Lavrik, Biokhimiya, 2002, 67, 807 [Biochemistry (Moscow), 2002, 67 (Engl. Transl.)].

    CAS  Google Scholar 

  23. Promega Protocols and Applications Guide, Ed. D. E. Tutus, Promega Corporation, Madison, 1991, 150.

    Google Scholar 

  24. V. Yamshchikov, in Metody molekulyarnoi genetiki i gennoi inzhenerii [Molecular Genetics and Genetic Engineering Methods], Nauka, Novosibirsk, 1990, 112 (in Russian).

    Google Scholar 

  25. J. Sambrook, E. F. Fritsch, and T. Maniatis, Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989.

    Google Scholar 

  26. U. K. Laemmli, Nature, 1970, 277, 680.

    Google Scholar 

  27. M. Swain and N. W. Ross, Electrophoresis, 1995, 16, 948.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 1273–1283, May, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dezhurov, S.V., Grin, I.R., Safronov, I.V. et al. Highly efficient modification of DNA polymerase β under conditions of direct and sensitized activation of photoreactive DNAs. Modification of cell extract proteins. Russ Chem Bull 54, 1311–1321 (2005). https://doi.org/10.1007/s11172-005-0400-7

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-005-0400-7

Key words

Navigation