Skip to main content
Log in

Theoretical Conformational Analysis in the Determination of Productive Conformations of Substrates for Acetylcholinesterase and Butyrylcholinesterase

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

All the equilibrium conformations of 34 analogues of acetylcholine (ACh) with the general formula R-C(O)O-Alk-N+(CH3)3 are calculated by the method of molecular mechanics. In the series R-C(O)O-(CH2)2-N+(CH3)3, a reliable correlation is found between the molecular volume of the substrate and the rate of its hydrolysis by acetylcholinesterase (AChE); the absence of such a correlation is demonstrated for butyryl-cholinesterase (BChE). Theoretical conformational analysis confirms that the completely extended tt conformation of ACh is productive for the hydrolysis by AChE, which agrees with the results of X-ray analysis of AChE. AChE is shown to hydrolyze only those substrates that form equilibrium conformers compatible in the mutual arrangement of trimethylammonium group, carbonyl carbon, and carbonyl oxygen with the tt conformation of ACh; in this case, the rate of substrate hydrolysis depends on the total population of these conformers. A reliable correlation was found between the population of the semifolded (tg ) conformation of the choline moiety of substrate molecules and rate of their BChE hydrolysis. In a series of CH3-C(O)O-Alk-N+(CH3)3, the rate of BChE hydrolysis is demonstrated to depend on the total population of conformations compatible in the mutual arrangement of functionally important atoms with the tg conformation of ACh. The tg conformation of ACh is concluded to be productive for BChE hydrolysis. Similar orientations of the substrate molecules relative to the catalytic triads of both AChE and BChE are proven to coincide upon the substrate productive sorption in their active sites. It is hypothesized that the sorption stage is rate-limiting in cholinesterase hydrolysis and the enzyme hydrolyzes the ACh molecule in its energetically favorable conformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACh:

acetylcholine

AChE:

acetylcholnesterase

BChE:

butyrylcholinesterase

TCA:

theoretical conformational analysis

REFERENCES

  1. Brestkin, A.P., Rozengart, E.V., Abduvakhabov, A.A., and Sadykov, A.S., Usp. Khim., 1983, vol. 52, pp. 1624–1647.

    Google Scholar 

  2. Basova, N.E., Rozengart, E.V., and Khovanskikh, A.E., Zh. Evol. Biokhim. Fiziol., 2000, vol. 36, pp. 97–102.

    PubMed  Google Scholar 

  3. Moralev, S.N. and Rozengart, E.V., Zh. Evol. Biokhim. Fiziol., 2001, vol. 37, pp. 358–373.

    PubMed  Google Scholar 

  4. Rozengart, E.V., Basova, N.E., Suvorov, A.A., and Khovanskikh, A.E., Zh. Evol. Biokhim. Fiziol., 2002, vol. 38, pp. 14–19.

    PubMed  Google Scholar 

  5. Rozengart, E.V., Basova, N.E., and Suvorov, A.A., Zh. Evol. Biokhim. Fiziol., 2002, vol. 38, pp. 209–213.

    Google Scholar 

  6. Sadykov, A.S., Rozengart, E.V., Abduvakhabov, A.A., and Aslanov, Kh.A., Kholinesterazy. Aktivnyi tsentr i mekhanizm deistviya (Cholinesterases: Active Site and Mechanism of Action), Tashkent: Fan, 1976.

    Google Scholar 

  7. Brestkin, A.P., Kuznetsova, L.P., Moralev, S.N., Rozengart, E.V., and Epshtein, L.M., Kholinesterazy nazemnykh zhivotnykh i gidrobiontov (Cholinesterases of Terrestrial Animals and Hydrobionts), Vladivostok: Tikhookeanskii nauchno-issledovatel'skii rybokhozyaistvennyi tsentr (TINRO), 1997.

    Google Scholar 

  8. Allon, N., Raveh, L., Gilat, E., Cohen, E., Grunwald, J., and Ashani, Y., Toxicol. Sci., 1998, vol. 43, pp. 121–128.

    Article  PubMed  Google Scholar 

  9. Nese Cokugras, A., Turkish J. Biochem., 2003, vol. 28, pp. 54–61.

    Google Scholar 

  10. Shestakova, N.N., Rozengart, E.V., Khovanskikh, A.E., Zhorov, B.S., and Govyrin, V.A., Bioorg. Khim., 1989, vol. 15, pp. 335–344.

    PubMed  Google Scholar 

  11. Zhorov, B.S., Shestakova, N.N., and Rozengart, E.V., Quant. Struct.-Act. Relat., 1991, vol. 10, pp. 205–210.

    Google Scholar 

  12. Shestakova, N.N. and Rozengart, E.V., Bioorg. Khim., 1995, vol. 21, pp. 323–329.

    PubMed  Google Scholar 

  13. Sussman, I., Harel, M., Frolow, F., Oefner, C., Goldman, A., Toker, L., and Silman, I., Science, 1991, vol. 253, pp. 872–875.

    PubMed  Google Scholar 

  14. Millard, C.B. and Broomfield, C.A., Biochem. Biophys. Res. Commun., 1992, vol. 189, pp. 1280–1286.

    Article  PubMed  Google Scholar 

  15. Nicolet, Y., Lockridge, O., Masson, P., Fontecilla-Camps, J.C., and Nachon, F., J. Biol. Chem., 2003, vol. 278, pp. 41 141–41 147.

    Article  Google Scholar 

  16. Zhorov, B.S., Avtometriya, 1975, vol. 1, pp. 23–29.

    Google Scholar 

  17. Dashevskii, V.G., Konformatsionnyi analiz organicheskikh molekul (Conformational Analysis of Organic Molecules), Moscow: Khimiya, 1982.

    Google Scholar 

  18. Maslov, V.G., Zh. Strukt. Khim., 1977, vol. 18, pp. 414–415.

    Google Scholar 

  19. Rozengart, E.V., Shestakova, N.N., Prokator, S.O., and Basova, N.E., Zh. Evol. Biokhim. Fiziol., 1995, vol. 31, pp. 381–389.

    Google Scholar 

  20. Hypercube: Computational Chemistry, Publication HC40-00-03-00, Inc. HyperChem Manual, 1994, ch. 12, pp. 255–259.

  21. Shestakova, N.N. and Rozengart, E.V., Dokl. Ross. Akad. Nauk, 1996, vol. 346, pp. 266–267.

    Google Scholar 

  22. Belinskaya, D.A. and Shestakova, N.N., Dokl. Ross. Akad. Nauk, 2004, vol. 396, pp. 258–262.

    Google Scholar 

  23. Ines Primozic, Tomica Hrenar, Srdanka Tomic, and Zlatko Meic, Croatica Chemica Acta, 2003, vol. 76, pp. 93–99.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Belinskaya.

Additional information

__________

Translated from Bioorganicheskaya Khimiya, Vol. 31, No. 5, 2005, pp. 466–473.

Original Russian Text Copyright © 2005 by Belinskaya, Shestakova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belinskaya, D.A., Shestakova, N.N. Theoretical Conformational Analysis in the Determination of Productive Conformations of Substrates for Acetylcholinesterase and Butyrylcholinesterase. Russ J Bioorg Chem 31, 419–425 (2005). https://doi.org/10.1007/s11171-005-0058-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11171-005-0058-9

Key words

Navigation