Skip to main content
Log in

Effects of Cognitive Activation in Biology Lessons on Students’ Situational Interest and Achievement

  • Published:
Research in Science Education Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Notes

  1. As two of the teachers taught double lessons, we only videotaped them twice. One video could not be analysed due to technical problems that occurred during recording.

References

  • Australian Curriculum, Assessment and Reporting Authority. (2014). F-10 curriculum: the overarching ideas. Retrieved from http://www.australiancurriculum.edu.au/science/the-overarching-ideas.

  • Baumert, J., Blum, W., & Neubrand, M. (2004a). Drawing the lessons from PISA 2000: long-term research implications: gaining a better understanding of the relationship between system inputs and learning outcomes by assessing instructional and learning processes as mediating factors. Zeitschrift für Erziehungswissenschaft [Review of Education], 7(Beiheft 3), 143–158.

  • Baumert, J., Kunter, M., Brunner, M., Krauss, S., Blum, W., & Neubrand, M. (2004b). Mathematikunterricht aus Sicht der PISA-Schülerinnen und -Schüler und ihrer Lehrkräfte [Mathematics instruction from the perspective of PISA students and their teachers]. In PISA-Konsortium Deutschland (Ed.), PISA 2003 (pp. 314–354). Münster: Waxmann.

  • Baumert, J., Kunter, M., Blum, W., Brunner, M., Voss, T., Jordan, A., & Tsai, Y.-M. (2010). Teachers’ mathematical knowledge, cognitive activation in the classroom, and student progress. American Educational Research Journal, 47(1), 133–180.

    Article  Google Scholar 

  • Brophy, J. (2000). Teaching. Retrieved from http://www.ibe.unesco.org/publications/ educationalpracticesseriespdf/prac01e.pdf

  • Brown, A. L. (1994). The advancement of learning. Educational Researcher, 23(8), 4–12.

    Article  Google Scholar 

  • Chi, M. T. H. (2009). Active-constructive-interactive: a conceptual framework for differentiating learning activities. Topics in Cognitive Science, 1, 73–105.

    Article  Google Scholar 

  • Chi, M. T. H., & Wylie, R. (2014). The ICAP framework: linking cognitive engagement to active learning outcomes. Educational Psychologist, 49(4), 219–243.

    Article  Google Scholar 

  • Clausen, M. (2002). Unterrichtsqualität: eine Frage der Perspektive? [Instructional quality: a question of perspective?]. Münster: Waxmann.

    Google Scholar 

  • Conference of the Ministers of Education [KMK]. (2005). Beschlüsse der Kultusministerkonferenz Bildungsstandards im Fach Biologie für den Mittleren Schulabschluss (Jahrgangsstufe 10) [Resolution of the Standing Conference of the Ministers of Education and Cultural Affairs of the Länder in the Federal Republic of Germany Education Standards for the subject biology (grade 10)]. München: Luchterhand.

  • Cortina, J. M. (1993). What is coefficient alpha? An examination of theory and applications. Journal of Applied Psychology, 78(1), 98–104.

    Article  Google Scholar 

  • Craik, F. I., & Lockhart, R. S. (1972). Levels of processing: a framework for memory research. Journal of Verbal Learning and Verbal Behavior, 11(6), 671–684.

    Article  Google Scholar 

  • de Corte, E. (2004). Mainstreams and perspectives in research on learning (mathematics) from instruction. Applied Psychology: An International Review, 53(2), 279–310.

    Article  Google Scholar 

  • diSessa, A. A., Gillespie, N. M., & Esterly, J. B. (2004). Coherence versus fragmentation in the development of the concept of force. Cognitive Science, 28(6), 843–900. doi:10.1016/j.cogsci.2004.05.003

    Article  Google Scholar 

  • Ditton, H. (2002). Unterrichtsqualität — Konzeptionen, methodische Überlegungen und Perspektiven [Instructional quality—conception, methodological considerations, and perspectives]. Unterrichtswissenschaft [Teaching Science], 197–, 197–212.

  • Ergönenc, J., Neumann, K., & Fischer, H. E. (2014). The impact of pedagogical content knowledge on cognitive activation and student learning. In H. E. Fischer, P. Labudde, K. Neumann, & J. Viiri (Eds.), Quality of instruction in physics (pp. 145–160). Münster: Waxmann.

    Google Scholar 

  • Fischer, H. E., Labudde, P., Neumann, K., & Viiri, J. (Eds.). (2014). Quality of instruction in physics. Münster: Waxmann.

    Google Scholar 

  • Greeno, J. G. (2006). Theoretical and practical advances through research on learning. In J. L. Green, G. Camilli, & P. B. Elmore (Eds.), Handbook of complementary methods in education research (pp. 795–822). Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Hattie, J. (2009). Visible learning: a synthesis of meta-analyses relating to achievement. London: Routledge.

    Google Scholar 

  • Helmke, A. (2002). Kommentar: Unterrichtsqualität und Unterrichtsklima: Perspektiven und Sackgassen [Comment: instructional quality and instructional climate: perspectives and dead ends]. Unterrichtswissenschaft [Teaching Science], 30, 261–277.

  • Helmke, A. (2012). Unterrichtsqualität und Lehrerprofessionalität [Instructional quality and teachers’ professional competence]. Seelze: Klett Kallmeyer.

    Google Scholar 

  • Hidi, S. (2006). Interest: a unique motivational variable. Educational Research Review, 1, 69–82.

    Article  Google Scholar 

  • Hugener, I., Pauli, C., Reusser, K., Lipowsky, F., Rakoczy, K., & Klieme, E. (2009). Teaching patterns and learning quality in Swiss and German mathematics lessons. Learning and Instruction, 19(1), 66–78.

    Article  Google Scholar 

  • Jatzwauk, P., Rumann, S., & Sandmann, A. (2008). Der Einfluss des Aufgabeneinsatzes im Biologieunterricht auf die Lernleistung der Schüler — Ergebnisse einer Videostudie [The effect of usage of tasks in biology education on learning performance—a video study]. Zeitschrift für Didaktik der Naturwissenschaften [Journal of Teaching of Natural Sciences], 14, 263–283.

  • Jordan, A., Krauss, S., Löwen, K., Blum, W., Neubrand, M., Brunner, M., & Baumert, J. (2008). Aufgaben im COACTIV-Projekt: Zeugnisse des kognitiven Aktivierungspotentials im deutschen Mathematikunterricht [Tasks in COACTIV: potential to cognitive activate in German mathematics instruction]. Journal für Mathematik-Didaktik [Journal of Mathematics Education], 29(2), 83–107.

  • Jüttner, M., Boone, W., Park, S., & Neuhaus, B. J. (2013). Development and use of a test instrument to measure biology teachers’ content knowledge (CK) and pedagogical content knowledge (PCK). Educational Assessment, Evaluation and Accountability, 25(1), 45–67.

    Article  Google Scholar 

  • Klauer, K. J., & Leutner, D. (2007). Lehren und Lernen [Teaching and learning]. Beltz: Weinheim.

    Google Scholar 

  • Kleickmann, T. (2012). Kognitiv aktivieren und inhaltlich strukturieren im naturwissenschaftlichen Sachunterricht [Cognitively activating and structuring content in science lessons]. Kiel: IPN Universität Kiel.

    Google Scholar 

  • Klieme, E., & Bos, W. (2000). Mathematikleistung und mathematischer Unterricht in Deutschland und Japan [Mathematics achievement and instruction in Germany and Japan]. Zeitschrift für Erziehungswissenschaft [Review of Education], 3(3), 359–379.

  • Klieme, E., Schümer, G., & Knoll, S. (2001). Mathematikunterricht in der Sekundarstufe I: „Aufgabenkultur“und Unterrichtsgestaltung [Mathematics instruction in secondary education: task culture and instructional processes]. In Bundesministerium für Bildung und Forschung (Ed.), TIMSS — Impulse für Schule und Unterricht [TIMSS—impetus for school and teaching] (pp. 43–57). Bonn: BMBF.

  • Klieme, E., Lipowsky, F., Rakoczy, K., & Ratzka, N. (2006). Qualitätsdimension und Wirksamkeit von Mathematikunterricht: Theoretische Grundlagen und ausgewählte Ergebnisse des Projekts "Pythagoras" [Dimension of quality and effectiveness of mathematics instruction: theoretical bases and selected results of the project “Pythagoras”]. In M. Prenzel & L. Allolio-Näcke (Eds.), Untersuchungen zur Bildungsqualität von Schule. Abschlussbericht des DFG-Schwerpunktprogramms [Research on quality of education in school] (pp. 127–146). Waxmann: Münster.

    Google Scholar 

  • Krapp, A. (2002). Structural and dynamic aspects of interest development: theoretical considerations from an ontogenetic perspective. Learning and Instruction, 12, 383–409.

    Article  Google Scholar 

  • Kremer, K., Fischer, H. E., Kauertz, A., Mayer, J., Sumfleth, E., & Walpuski, M. (2012). Assessment of standards-based outcomes in science education: perspectives from the German project ESNaS. In S. Bernholt, K. Neumann, & P. Nentwig (Eds.), Making it tangible: learning outcomes in science education (pp. 201–218). Münster: Waxmann.

    Google Scholar 

  • Kunter, M., Klusmann, U., Dubberke, T., Baumert, J., Blum, W., Brunner, M., & Tsau, Y.-M. (2007). Linking aspects of teacher competence to their instruction: results from the COACTIV project. In M. Prenzel (Ed.), Studies on the educational quality of schools. The final report on the DFG priority programme (pp. 39–59). Waxmann: Münster.

    Google Scholar 

  • Kunter, M., Klusmann, U., Baumert, J., Richter, D., Voss, T., & Hachfeld, A. (2013). Professional competence of teachers: effects on instructional quality and student development. Journal of Educational Psychology, 105(3), 805–820.

    Article  Google Scholar 

  • Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159–174.

    Article  Google Scholar 

  • Lenske, G., Thillmann, H., Wirth, J., & Leutner, D. (2015). Evaluation eines Tests zur Er-fassung des pädagogisch-psychologischen Professionswissens von Lehrkräften [Evaluation of a test instrument to measure pedagogical knowledge of teachers]. Manuscript submitted for publication.

  • Lipowsky, F. (2009). Unterricht [Teaching]. In E. Wild & J. Möller (Eds.), Springer-Lehrbuch. Pädagogische Psychologie [Educational psychology] (pp. 73–101). Berlin: Springer.

  • Lipowsky, F., Rakoczy, K., Pauli, C., Drollinger-Vetter, B., Klieme, E., & Reusser, K. (2009). Quality of geometry instruction and its short-term impact on students’ understanding of the Pythagorean Theorem. Learning and Instruction, 19(6), 527–537.

    Article  Google Scholar 

  • Loyens, S. M. M., & Gijbels, D. (2008). Understanding the effects of constructivist learning environments: introducing a multi-directional approach. Instructional Science, 36(5–6), 351–357.

    Article  Google Scholar 

  • Maas, C. J. M., & Hox, J. J. (2005). Sufficient sample sizes for multilevel modeling. Methodology, 1(3), 86–92.

    Article  Google Scholar 

  • Mayer, R. E. (2004). Should there be a three-strikes rule against pure discovery learning? The case for guided methods of instruction. American Psychologist, 59(1), 14–19.

    Article  Google Scholar 

  • Mayer, R. E. (2009). Constructivism as a theory of learning versus constructivism as a prescription for instruction. In S. Tobias & T. M. Duffy (Eds.), Constructivist instruction: success or failure? (pp. 184–200). New York: Routledge.

    Google Scholar 

  • Mok, M. (1995). Sample size requirements for 2-level designs in educational research. Multilevel Modelling Newsletter, 7(2), 11–15.

    Google Scholar 

  • Nachreiner, K., Spangler, M., & Neuhaus, B. J. (2015). Begründung eines an Basiskonzepten orientierten Unterrichts [Justification of Oriented Basic Concepts Teaching]. [Teaching based on biological core ideas. A theoretical foundation.]. Der mathematische und naturwissenschaftliche Unterricht [The Math and Science Education], 68(3), 172–177.

  • National Center for Educational Statistics. (2003). Teaching mathematics in seven countries: results from the TIMSS 1999 video study. Washington, D.C.: U.S. Department of Education, National Center for Education Statistics.

    Google Scholar 

  • National Center for Educational Statistics. (2006a). Highlights from the TIMSS 1999 video study of eighth-grade science teaching. Washington, D.C.: U.S. Department of Education, National Center for Educational Statistics.

    Google Scholar 

  • National Center for Educational Statistics. (2006b). Teaching science in five countries: results from the TIMSS 1999 video study. Washington, D.C.: U.S. Department of Education, National Center for Educational Statistics.

    Google Scholar 

  • NGSS Lead States. (2013). Next generation science standards: for States, by States. Washington D.C.: National Academies.

  • Neuhaus, B. J. (2007). Unterrichtsqualität als Forschungsfeld für empirische biologiedidaktische Studien [Instructional quality as a research field for empirical studies in biology education]. In D. Krüger & H. Vogt (Eds.), Theorien in der biologiedidaktischen Forschung [Theories in biology educational research] (pp. 143–154). Berlin: Springer.

    Google Scholar 

  • Neuhaus, B., Nachreiner, K., Oberbeil, I., & Spangler, M. (2014). Basiskonzepte zur Planung von Biologieunterricht: Ein Gedankenspiel [Planning biology lessons based on disciplinary core ideas]. Der mathematische und naturwissenschaftliche Unterricht [The Math and Science Education], 67(3), 160–165.

  • Neumann, K., Fischer, H. E., & Sumfleth, E. (2008). Vertikale Vernetzung und kumulatives Lernen im Chemie- und Physikunterricht [Vertical networking and cumulative learning in chemistry and physics education]. In E.-M. Lankes (Ed.), Pädagogische Professionalität als Gegenstand empirischer Forschung [Empirical research addressing pedagogical professionalism] (pp. 141–151). Münster: Waxmann.

    Google Scholar 

  • Neumann, K., Fischer, H. E., & Kauertz, A. (2010). From PISA to educational standards: the impact of large-scale assessments on science education in Germany. International Journal of Science and Mathematics Education, 8(3), 545–563.

    Article  Google Scholar 

  • Neumann, K., Kauertz, A., & Fischer, H. E. (2012). Quality of instruction in science education. In B. J. Fraser, K. Tobin, & C. J. McRobbie (Eds.), Second international handbook of science education (pp. 247–258). Berlin: Springer.

    Chapter  Google Scholar 

  • Özdemir, G., & Clark, D. B. (2007). An overview of conceptual change theories. Eurasia Journal of Mathematics, Science & Technology Education, 3(4), 351–361.

    Google Scholar 

  • Piaget, J. (1985). The equilibration of cognitive structures: the central problem of intellectual development. Chicago: University of Chicago.

    Google Scholar 

  • Praetorius, A.-K., Lenske, G., & Helmke, A. (2012). Observer ratings of instructional quality: do they fulfil what they promise? Learning and Instruction, 22, 387–400.

    Article  Google Scholar 

  • Rakoczy, K., & Pauli, C. (2006). Hoch inferentes Rating: Beurteilung der Qualität unterrichtlicher Prozesse [High-inferent rating: assessing instructional quality]. In E. Klieme, C. Pauli, & K. Reusser (Eds.), Materialien zur Bildungsforschung: Vol. 15. Dokumentation der Erhebungs- und Auswertungsinstrumente zur schweizerisch-deutschen Videostudie "Unterrichtsqualität, Lernverhalten und mathematisches Verständnis". Teil 3 Videoanalysen [Materials for research on education: vol.15. Data collection and analysis instruments of the Swiss-German video study “Instructional quality, learning behaviour and mathematical understanding”. Part 3 video analyses] (pp. 206–233). Frankfurt am Main: GFPF & DIPF.

  • Rakoczy, K., Klieme, E., Drollinger-Vetter, B., Lipowsky, F., Pauli, C., & Reusser, K. (2007). Structure as a quality feature in mathematics instruction. In M. Prenzel (Ed.), Studies on the educational quality of schools: the final report on the DFG priority programme (pp. 101–120). Münster: Waxmann.

    Google Scholar 

  • Raudenbush, S. W., Bryk, A. S., Cheong, Y. F., Congdon, R. T., Jr., & du Toit, M. (2011). HLM 7: hierarchical linear and nonlinear modelling [computer software]. Lincolnwood: Scientific Software International.

    Google Scholar 

  • Reinold, P. (2012). Grundwissen und Kompetenzen testen: Zentrale Lernstandserhebung in Natur und Technik [Testing basic knowledge and competencies: voluntary learning assessment in nature and science]. Naturwissenschaften im Unterricht Chemie [Science in Teaching Chemistry], 23(130/131), 80–84.

  • Reusser, K. (2006). Konstruktivismus — vom epistemologischen Leitbegriff zur Erneuerung der didaktischen Kultur [Constructivism—from epistemological term to a renewal of didactical culture]. In M. Baer, M. Fuchs, P. Füglister, K. Reusser, & H. Wyss (Eds.), Didaktik auf psychologischer Grundlage. Von Hans Aeblis kognitionspsychologischer Didaktik zur modernen Lehr- und Lernforschung [Didactics based on psychological theories. From Hans Aeblis’ cognitive psychological didactic to modern teaching and learning research] (pp. 151–168). Hep.: Bern.

  • Schiefele, U. (2009). Situational and individual interest. In K. Wetzel & A. Wigfield (Eds.), Handbook of motivation at school (pp. 197–222). New York: Routledge.

    Google Scholar 

  • Schmiemann, P., Linsner, M., Wenning, S., & Sandmann, A. (2012). Lernen mit biologischen Basiskonzepten [Learning based on biological core ideas]. Mathematisch und Naturwissenschaftlicher Unterricht [Mathematics and Science Education], 65(2), 105–109.

  • Seidel, T., & Shavelson, R. J. (2007). Teaching effectiveness research in the past decade: the role of theory and research design in disentangling meta-analysis results. Review of Educational Research, 77(4), 454–499.

    Article  Google Scholar 

  • Seidel, T., Rimmele, R., & Prenzel, M. (2003). Gelegenheitsstrukturen beim Klassengespräch und ihre Bedeutung für die Lernmotivation [Opportunity structures in classrooms and their influence on motivation]. Unterrichtswissenschaft, 31(2), 142–165.

    Google Scholar 

  • Seidel, T., Prenzel, M., & Kobarg, M. (Eds.). (2005a). How to run a video study: technical report of the IPN video study. Münster: Waxmann.

    Google Scholar 

  • Seidel, T., Rimmele, R., & Prenzel, M. (2005b). Clarity and coherence of lesson goals as a scaffold for student learning. Learning and Instruction, 15(6), 539–556.

    Article  Google Scholar 

  • Seidel, T., Prenzel, M., Rimmele, R., Herweg, C., Kobarg, M., Schwindt, K., & Dalehefte, M. (2007). Science teaching and learning in German physics classrooms. In M. Prenzel (Ed.), Studies on the educational quality of schools: the final report on the DFG priority programme (pp. 79–99). Münster: Waxmann.

    Google Scholar 

  • Shayer, M. (1999). Cognitive acceleration through science education II: its effects and scope. International Journal of Science Education, 21(8), 883–902.

    Article  Google Scholar 

  • Shayer, M., & Adhami, M. (2007). Fostering cognitive development through the context of mathematics: results of the CAME project. Educational Studies in Mathematics, 64(3), 265–291.

    Article  Google Scholar 

  • Slavin, R. E. (1994). Quality, appropriateness, incentive, and time: a model of instructional effectiveness. International Journal of Educational Research, 21(2), 141–157.

    Article  Google Scholar 

  • Stein, M. K., & Lane, S. (1996). Instructional tasks and the development of student capacity to think and reason: an analysis of the relationship between teaching and learning in a reform mathematics project. Educational Research and Evaluation, 2(1), 50–80.

    Article  Google Scholar 

  • Stigler, J. W., Gonzales, P., Kawanaka, T., Knoll, S., & Serrano, A. (1999). The TIMSS videotape classroom study: methods and findings from an exploratory research project on methods and findings from an exploratory research project on eighth-grade mathematics instruction in Germany, Japan, and the United States. Washington, D.C.: U.S. Department of Education, National Center for Educational Statistics.

    Google Scholar 

  • Tepner, O., Borowski, A., Dollny, S., Fischer, H. E., Jüttner, M., Kirschner, S., & Wirth, J. (2012). Modell zur Entwicklung von Testitems zur Erfassung des Professionswissens von Lehrkräften in den Naturwissenschaften [Model for the development of test items measuring science teachers’ professional knowledge]. Zeitschrift für Didaktik der Naturwissenschaften, 18, 7–28.

    Google Scholar 

  • Vogelsang, C., & Reinhold, P. (2013). Gemessene Kompetenz und Unterrichtsqualität: Überprüfung der Validität eine Kompetenztests mit Hilfe der Unterrichtsvideografie [Measured competence and instructional quality: validating a competence test using videos of instruction]. In U. Riegel & K. Macha (Eds.), Videobasierte Kompetenzforschung in den Fachdidaktiken [Educational research on competencies with videos] (pp. 319–334). Münster: Waxmann.

    Google Scholar 

  • Vogt, H., Upmeier zu Belzen, A., Bonato, M., & Hesse, M. (1999). Einfluß von Biologieunterricht auf die Entwicklung von Interessen und Einstellungen bei Schülern einer sechsten Jahrgangsstufe eines Gymnasiums [Influence of biology instruction on the development of sixth grade secondary school students’ interests and beliefs]. In R. Duit & J. Mayer (Eds.), Studien zur naturwissenschaftsdidaktischen Lern- und Interessenforschung [Studies from learning and interest research in science education] (pp. 131–149). Kiel: IPN.

    Google Scholar 

  • von Kotzebue, L., Förtsch, C., Reinold, P., Werner, S., Sczudlek, M., & Neuhaus, B. J. (2015). Quantitative Videostudien zum gymnasialen Biologieunterricht in Deutschland – Aktuelle Tendenzen und Entwicklungen [Quantitative Video Studies in Biology Instruction in Secondary Schools in Germany: Current Trends and Developments]. Zeitschrift für Didaktik der Naturwissenschaften [Journal of Teaching of Natural Sciences], 21(1), 231–237. doi:10.1007/s40573-015-0033-9.

  • Vygotsky, L. S. (1978). Mind in society: the development of higher psychological processes. Cambridge: Harvard University.

    Google Scholar 

  • Wadouh, J., Liu, N., Sandmann, A., & Neuhaus, B. J. (2014). The effect of knowledge linking levels in biology lessons upon students’ knowledge structure. International Journal of Science and Mathematics Education, 12(1), 25–47.

    Article  Google Scholar 

  • Waldis, M., Grob, U., Pauli, C., & Reusser, K. (2010). Der Einfluss der Unterrichtsgestaltung auf Fachinteresse und Mathematikleistung [The influence of instruction on interest and mathematics achievement]. In K. Reusser, C. Pauli, & M. Waldis (Eds.), Unterrichtsgestaltung und Unterrichtsqualität. Ergebnisse einer internationalen und schweizerischen Videostudie zum Mathematikunterricht [Instruction and instructional quality: results of an international and Swiss video study in mathematics] (pp. 209–251). Waxmann: Münster.

    Google Scholar 

  • Walshaw, M., & Anthony, G. (2008). The teacher’s role in classroom discourse: a review of recent research into mathematics classrooms. Review of Educational Research, 78(3), 516–551.

    Article  Google Scholar 

  • Werner, S., Sczudlek, M., & Neuhaus, B. J. (2013). Eine Videostudie zur Professionalität von Biologielehrkräften (ProwiN) [A video study on professional knowledge of biology teachers (ProwiN)]. In D. Krüger, P. Schmiemann, A. Möller, A. Dittmer, & J. Zabel (Eds.), Erkenntnisweg Biologiedidaktik 12 [Path of knowledge biology education 12] (pp. 59–73). Universitätsdruckerei Kassel: Kassel.

    Google Scholar 

  • Wild, E., Gerber, J., Exeler, J., & Remy, K. (2001). Dokumentation der Skalen- und Item-Auswahl für den Kinderfragebogen zur Lernmotivation und zum emotionalen Erleben [Documentation of the scales and items of the questionnaire on motivation and emotional experience]. Bielefeld, Germany:  Universität Bielefeld.

Download references

Acknowledgments

This research was supported by grant (no. NE 1196/6-1) from the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Förtsch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Förtsch, C., Werner, S., Dorfner, T. et al. Effects of Cognitive Activation in Biology Lessons on Students’ Situational Interest and Achievement. Res Sci Educ 47, 559–578 (2017). https://doi.org/10.1007/s11165-016-9517-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11165-016-9517-y

Keywords

Navigation