Skip to main content
Log in

Students Explaining Science—Assessment of Science Communication Competence

  • Published:
Research in Science Education Aims and scope Submit manuscript

Abstract

Science communication competence (SCC) is an important educational goal in the school science curricula of several countries. However, there is a lack of research about the structure and the assessment of SCC. This paper specifies the theoretical framework of SCC by a competence model. We developed a qualitative assessment method for SCC that is based on an expert–novice dialog: an older student (explainer, expert) explains a physics phenomenon to a younger peer (addressee, novice) in a controlled test setting. The explanations are video-recorded and analysed by qualitative content analysis. The method was applied in a study with 46 secondary school students as explainers. Our aims were (a) to evaluate whether our model covers the relevant features of SCC, (b) to validate the assessment method and (c) to find characteristics of addressee-adequate explanations. A performance index was calculated to quantify the explainers’ levels of competence on an ordinal scale. We present qualitative and quantitative evidence that the index is adequate for assessment purposes. It correlates with results from a written SCC test and a perspective taking test (convergent validity). Addressee-adequate explanations can be characterized by use of graphical representations and deliberate switches between scientific and everyday language.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • ACARA (2012). The Australian Curriculum—Science. Australian Curriculum, Assessment and Reporting Authority.

  • Aikenhead, G. S. (2001). Science communication: A cross cultural event. In S. M. Stocklmayer, M. G. Gore, & C. Bryant (Eds.), Science communication in theory and practice (pp. 23–46). Dordrecht: Kluwer Academic.

    Chapter  Google Scholar 

  • Berland, L. K., & McNeill, K. L. (2012). For whom is argument and explanation a necessary distinction? A response to osborne and patterson. Science Education, 96(5), 808–813.

    Article  Google Scholar 

  • Bernholt, S., Eggert, S., & Kulgemeyer, C. (2012). Capturing the diversity of students’ competences in science classrooms: Differences and commonalities of three complementary approaches. In S. Bernholt, K. Neumann, & P. Nentwig (Eds.), Making it tangible: learning outcomes in science education (pp. 173–201). Münster: Waxmann.

    Google Scholar 

  • Bortz, J., & Döring, N. (2006). Forschungsmethoden und Evaluation für Human- und Sozialwissenschaftler. Heidelberg: Springer Medizin.

    Book  Google Scholar 

  • Braaten, M., & Windschitl, M. (2011). Working toward a stronger conceptualization of scientific explanation for science education. Science Education, 95(4), 639–669.

    Article  Google Scholar 

  • Bricker, L. A., & Bell, P. (2008). Conceptualizations of argumentation from learning science studies and the learning sciences and their implications for the practices of science education. Science Education, 92, 437–498.

    Article  Google Scholar 

  • Brown, G. (2006). Explaining. In O. Hargie (Ed.), The handbook of communication skills (pp. 195–228). East Sussex: Taylor & Francis.

    Google Scholar 

  • Bucchi, M., & Trench, B. (Eds.). (2008). Handbook of public communication of science and technology. Abingdon: Routledge.

    Google Scholar 

  • Campbell, D., & Fiske, D. (1959). Convergent and discriminant validation by the multitrait multimethod matrix. Psychological Bulletin, 56(2), 81–105.

    Article  Google Scholar 

  • Chandrasegaran, A. L., Treagust, D. F., & Mocerino, M. (2008). An evaluation to promote students’ ability to use multiple representation when describing and explaining chemical reactions. Research in Science Education, 38, 237–248.

    Article  Google Scholar 

  • Clark, H. (1996). Using language. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • CSMEE (Center for Science, Mathematics, and Engineering Education). (1996). National science education standards. Washington: National Academy Press.

    Google Scholar 

  • Davis, M. (1980). A multidimensional approach to individual differences in empathy. Catalogue of Selected Documents in Psychology, 10MS. 2124, 85.

  • Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classroom. Science Education, 84(3), 287–312.

    Article  Google Scholar 

  • Edmondston, J., Dawson, V., & Schibeci, R. (2010). Undergraduate biotechnology students’ views of science education. International Journal of Science Education, 32(18), 2451–2474.

    Article  Google Scholar 

  • Einhaus, E. (2007). Schülerkompetenzen im Bereich Wärmelehre. Berlin: Logos.

    Google Scholar 

  • Einhaus, E. & Schecker, H. (2007). Modelling science competencies. Proceedings of the Sixth International ESERA Conference (CD).

  • Gage, N. (1968). The microcriterion of effectiveness in explaining. In N. Gage (Ed.), Explorations of the teacher’s effectiveness in explaining, Technical Report No. 4 (pp. 1–8). Stanford Center for Research and Developement in Teaching.

  • Gilbert, J. (2006). On the nature of “context” in chemical education. International Journal of Science Education, 28(9), 957–976.

    Article  Google Scholar 

  • Gilbert, J. & Treagust, D. F. (2009). Macro, submicro and symbolic representations and the relationship between them: Key models in chemical education. In J. Gilbert & D. Treagust (Ed.), Multiple representations in chemical education. New York: Springer.

  • Hafner, R. (2007). Standards in science education in Australia. In D. Waddington, P. Nentwig, & S. Schanze (Eds.), Making it comparable. Standards in science education (pp. 23–60). Münster: Waxmann.

    Google Scholar 

  • Kauertz, A. (2008). Schwierigkeitserzeugende Merkmale physikalischer Leistungstestaufgaben. Berlin: Logos.

    Google Scholar 

  • Kauertz, A., Fischer, H., Mayer, J., Sumfleth, E., & Walpuski, M. (2012). Standardbezogene Kompetenzmodellierung in den Naturwissenschaften der Sekundarstufe I. Zeitschrift für Didaktik der Naturwissenschaften, 16, 135–155.

    Google Scholar 

  • King, A., Staffieri, A., & Adelgais, A. (1998). Mutual peer tutoring: effects of structuring tutorial interaction to scaffold peer learning. Journal of Educational Psychology, 90(1), 134–152.

    Article  Google Scholar 

  • Klieme, E., Avenarius, H., Blum, W., Döbrich, P., Gruber, H., Prenzel, M., et al. (2003). Zur Entwicklung nationaler Bildungsstandards—Expertise. Bundesministerium für Bildung und Forschung (BMBF).

  • KMK (Sekretariat der Ständigen Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland). (2005). Bildungsstandards im Fach Physik für den Mittleren Schulabschluss. München: Luchterhand.

    Google Scholar 

  • Kremer, K., Fischer, H., Kauertz, A., Mayer, J., Sumfleth, E., & Walpuski, M. (2012). Assessment of standard-based learning outcomes in science education: Perspectives from the german project esnas. In S. Bernholt, K. Neumann, & P. Nentwig (Eds.), Making it tangible: learning outcomes in science education (pp. 201–218). Münster: Waxmann.

    Google Scholar 

  • Kulgemeyer, C. (2010). Physikalische Kommunikationskompetenz. Modellierung und Diagnostik. Berlin: Logos.

    Google Scholar 

  • Kulgemeyer, C. (2011). Physik erklären als Rollenspiel. Adressatengemäßes Kommunizieren fördern und diagnostizieren. Naturwissenschaften im Unterricht Physik, 22(123/124), 70–74.

    Google Scholar 

  • Kulgemeyer, C., & Schecker, H. (2009). Physics communication competence: on the development of a domain-specific concept of communication. Zeitschrift für Didaktik der Naturwissenschaften, 15, 131–153.

    Google Scholar 

  • Kulgemeyer, C., & Schecker, H. (2012). Physikalische Kommunikationskompetenz—Empirische Validierung eines normativen Modells. Zeitschrift für Didaktik der Naturwissenschaften, 18, 29–54.

    Google Scholar 

  • Kunter, M., Schümer, G., Artelt, C., Baumert, J., Klieme, E., Neubrand, M., et al. (2002). PISA 2000—Dokumentation der Erhebungsinstrumente. MPI für Bildungsforschung.

  • Mayring, P. (2000). Qualitative content analysis. Forum: Qualitative Social Research [Online Journal], 1(2). Available at: http://www.qualitative-research.net/fqs-texte/2-00/2-00mayring-e.htm. Date of Access 21 Sep 2010.

  • MCEETYA (Ministerial Council on Education, Employment, Training and Youth Affairs) (2005). National assessment: Program, science, year 6, 2003: Technical report. MCEETYA.

  • McNeill, K. (2009). Teachers’ use of curriculum to support students in writing scientific arguments to explain phenomena. Science Education, 93(2), 233–268.

    Article  Google Scholar 

  • McNeill, K. (2011). Elementary students’ views of explanation, argumentation and evidence and abilities to construct arguments over the school year. Journal of Research in Science Teaching, 48(7), 793–823.

    Article  Google Scholar 

  • McNeill, K., & Krajcik, J. (2007). Inquiry and scientific explanations: Helping students use evidence and reasoning. In J. Luft, R. Bell, & J. Gess-Newsome (Eds.), Science as an inquiry in the secondary setting (pp. 121–134). USA: National Science Teachers Association.

    Google Scholar 

  • Merten, K. (1995). Konstruktivismus als Theorie für die Kommunikationswissenschaft. MedienJournal, 4, 3–21.

    Google Scholar 

  • Nagel, E. (1961). The structure of science: Problems in the logic of scientific explanation. London: Routledge and Kegan Paul.

  • Ogborn, J., Kress, G., Martins, I., & McGillicuddy, K. (1996). Explaining science in the classroom. Buckingham: Open University Press.

    Google Scholar 

  • Osborne, J. F., & Patterson, A. (2011). Scientific argument and explanation: a necessary distinction? Science Education, 95(4), 627–638.

    Article  Google Scholar 

  • Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10), 994–1020.

    Article  Google Scholar 

  • Rincke, K. (2011). It’s rather like learning a language: development of talk and conceptual understanding in mechanics lessons. Internationale Journal of Science Education, 33(2), 229–258.

    Article  Google Scholar 

  • Rusch, G. (1999). Eine Kommunikationstheorie für kognitive Systeme. In G. Rusch & S. Schmidt (Eds.), Konstruktivismus in der Medien- und Kommunikationswissenschaft (pp. 150–184). Frankfurt a. M.: Suhrkamp.

    Google Scholar 

  • Schecker, H. (2012). Standards, competencies and outcomes. A critical view. In S. Bernholt, K. Neumann, & P. Nentwig (Eds.), Making it tangible: learning outcomes in science education (pp. 219–234). Münster: Waxmann.

    Google Scholar 

  • Schecker, H., & Parchmann, I. (2006). Modellierung naturwissenschaftlicher Kompetenz. Zeitschrift für Didaktik der Naturwissenschaften, 12, 45–66.

    Google Scholar 

  • Schecker, H., & Parchmann, I. (2007). Standards and competence models: The German situation. In D. Waddington, P. Nentwig, & S. Schanze (Eds.), Making it comparable. Standards in science education (pp. 147–164). Münster: Waxmann.

    Google Scholar 

  • Schmidt, M. (2008). Kompetenzmodellierung und –diagnostik im Themengebiet Energie der Sekundarstufe I. Entwicklung und Erprobung eines Testinventars. Berlin: Logos.

    Google Scholar 

  • Sevian, H., & Gonsalves, L. (2008). Analysing how scientists explain their research: a rubric for measuring the effectiveness of scientific explanations. International Journal of Science Education, 30(11), 1441–1467.

    Article  Google Scholar 

  • Shannon, C. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(379–423), 623–656.

    Article  Google Scholar 

  • Shulman, L. (1987). Knowledge and teaching: foundations of the new reform. Harvard Education Review, 57(1), 1–22.

    Google Scholar 

  • Toulmin, S. (1958). The uses of argument. Cambridge: Cambridge University Press.

    Google Scholar 

  • Treagust, D., & Harrison, A. (1999). The genesis of effective science explanations for the classroom. In J. Loughran (Ed.), Researching teaching: methodologies and practices for understanding pedagogy (pp. 28–43). Abingdon: Routledge.

    Google Scholar 

  • Von Aufschnaiter, C., Erduran, S., Osborne, J., & Simon, S. (2008). Arguing to learn and learning to argue: case studies of how students’ argumentation relates to their scientific knowledge. Journal of Research in Science Teaching, 45(1), 101–131.

    Article  Google Scholar 

  • Weinert, F. (2001). Concept of competence—A conceptual clarification. In D. S. Rychen & L. H. Salyanik (Eds.), Defining and selecting key competencies (pp. 45–65). Göttingen: Hogrefe & Huber.

    Google Scholar 

  • Wellenreuther, M. (2005). Lehren und Lernen - aber wie? Empirisch-experimentelle Forschung zum Lehren und Lernen im Unterricht. Hohengehren: Schneider.

    Google Scholar 

  • Zeidler, D. L., Osborne, J., Erduran, S., Simon, S., & Monk, M. (2003). The role of argument during discourse about socioscientific issues. In D. L. Zeidler (Ed.), The role of moral reasoning on socioscientific issues and discourse in science education. Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

Download references

Acknowledgments

Parts of this paper were written during a stay of the first author at the Science and Mathematics Education Centre (SMEC), Curtin University of Technology, Perth, Australia. The authors gratefully acknowledge Prof David F. Treagust and Dr A. L. Chandrasegaran for all their supporting comments and advices. The authors address special thanks to Christine Rauch, M. Ed., for proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Kulgemeyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulgemeyer, C., Schecker, H. Students Explaining Science—Assessment of Science Communication Competence. Res Sci Educ 43, 2235–2256 (2013). https://doi.org/10.1007/s11165-013-9354-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11165-013-9354-1

Keywords

Navigation