Skip to main content
Log in

Upper Secondary Students' Understanding of the Basic Physical Interactions in Analogous Atomic and Solar Systems

  • Published:
Research in Science Education Aims and scope Submit manuscript

Abstract

Comparing the atom to a ‘tiny solar system’ is a common teaching analogy, and the extent to which learners saw the systems as analogous was investigated. English upper secondary students were asked parallel questions about the physical interactions between the components of a simple atomic system and a simple solar system to investigate how they understood the forces acting within the two systems. A sample of just over 100 across the 15–18 age range responded to a pencil-and-paper instrument that asked about four aspects of the two systems. It was found that for both systems, about four fifths of students expected forces to decrease with increasing distance; but that only a little over half expected there to be interactions between the minor constituents (electrons and planets). Most students failed to apply Newton's third law to either system. There was a considerable difference in the extent to which respondents were able to identify the type of force acting in the systems (nearly all for the solar system, but only a small proportion in the case of the atom). The findings are considered in terms of both the limitations of students' understanding of the basic physics and possible implications for the use of the teaching analogy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adbo, K., & Taber, K. S. (2009). Learners' mental models of the particle nature of matter: a study of 16-year-old Swedish science students. International Journal of Science Education, 31(6), 757–786.

    Article  Google Scholar 

  • Ausubel, D. P. (2000). The acquisition and retention of knowledge: a cognitive view. Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Brewer, W. F. (2008). Naïve theories of observational astronomy: review, analysis, and theoretical implications. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 155–204). New York: Routledge.

    Google Scholar 

  • Brown, D. E., & Hammer, D. (2008). Conceptual change in physics. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 127–154). New York: Routledge.

    Google Scholar 

  • Clement, J. (1993). Using bridging analogies and anchoring intuitions to deal with students’ preconceptions in physics. Journal of Research in Science Teaching, 30(10), 1241–1257.

    Article  Google Scholar 

  • Clement, J. (2008). The role of explanatory models in teaching for conceptual change. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 417–452). New York: Routledge.

    Google Scholar 

  • Coll, R. K. (2008). Effective chemistry analogies. In A. G. Harrison & R. K. Coll (Eds.), Using analogies in middle and secondary science classrooms (pp. 132–174). Thousand Oaks: Corwin Press.

    Google Scholar 

  • Coll, R. K., & Treagust, D. F. (2001). Learners' mental models of chemical bonding. Research in Science Education, 31(3), 357–382.

    Article  Google Scholar 

  • diSessa, A. A. (1993). Towards an epistemology of physics. Cognition and Instruction, 10(2&3), 105–225.

    Article  Google Scholar 

  • Driver, R., Asoko, H., Leach, J., Mortimer, E., & Scott, P. (1994). Constructing scientific knowledge in the classroom. Educational Researcher, 23(7), 5–12.

    Article  Google Scholar 

  • Feynman, R. P., Leighton, R. B., & Sands, M. (Eds.). (1963). The Feynman lectures on physics (vol. 1). Reading: Addison-Wesley.

    Google Scholar 

  • Frisch, O. R. (1979). What little I remember. Cambridge: Cambridge University Press.

    Google Scholar 

  • Gentner, D. (1983). Structure-mapping: a theoretical framework for analogy. Cognitive Science, 7, 155–170.

    Article  Google Scholar 

  • Gilbert, J. K., & Treagust, D. F. (Eds.). (2009). Chemical education: linking the representational levels of chemistry. Dordrecht: Springer.

    Google Scholar 

  • Gilbert, J. K., & Watts, D. M. (1983). Concepts, misconceptions and alternative conceptions: changing perspectives in science education. Studies in Science Education, 10, 61–98.

    Article  Google Scholar 

  • Gilbert, J. K., & Zylbersztajn, A. (1985). A conceptual framework for science education: the case study of force and movement. European Journal of Science Education, 7(2), 107–120.

    Article  Google Scholar 

  • Glynn, S. M. (1991). Explaining science concepts: a teaching- with-analogies model. In S. M. Glynn, R. H. Yeany, & B. K. Britton (Eds.), The psychology of learning science (pp. 219–240). Hillsdale: Lawrence Erlbaum Associates.

    Google Scholar 

  • Glynn, S. M., Duit, R., & Thiele, R. B. (1995). Teaching science with analogies: a strategy for constructing knowledge. In S. M. Glynn & R. Duit (Eds.), Learning science in the schools: research reforming practice (pp. 247–273). Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Glynn, S. M., & Takahashi, T. (1998). Learning from analogy-enhanced science text. Journal of Research in Science Teaching, 35(10), 1129–1149.

    Article  Google Scholar 

  • Hammer, D. (2004). The variability of student reasoning, lecture 3: manifold cognitive resources. In E. F. Redish & M. Vicentini (Eds.), Research on physics education (pp. 321–340). Bologna: Italian Physical Society.

    Google Scholar 

  • Harrison, A. G. (2006). The affective, dimension of analogy: student interest is more than just interesting! In P. J. Aubusson, A. G. Harrison, & S. M. Ritchie (Eds.), Metaphor and analogy in science education (pp. 51–63). Dordecht: Springer.

    Chapter  Google Scholar 

  • Harrison, A. G., & Treagust, D. F. (1996). Secondary students’ mental models of atoms and molecules: implications for teaching chemistry. Science Education, 80(5), 509–534.

    Article  Google Scholar 

  • Harrison, A. G., & Treagust, D. F. (2000). Learning about atoms, molecules, and chemical bonds: a case study of multiple-model use in grade 11 chemistry. Science Education, 84, 352–381.

    Article  Google Scholar 

  • Harrison, A. G., & Treagust, D. F. (2002). The particulate nature of matter: challenges in understanding the submicroscopic world. In J. K. Gilbert, O. de Jong, R. Justi, D. F. Treagust, & J. H. Van Driel (Eds.), Chemical education: towards research-based practice (pp. 189–212). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Harrison, A. G., & Treagust, D. F. (2006). Teaching and learning with analogies: friend or foe? In P. J. Aubusson, A. G. Harrison & S. M. Ritchie (Eds.), Metaphor and Analogy in Science Education (pp. 11–24). Dordecht: Springer.

  • Harrison, A. G., & Coll, R. K. (Eds.). (2008). Using analogies in middle and secondary science classrooms. Thousand Oaks: Corwin.

    Google Scholar 

  • Justi, R., & Gilbert, J. K. (2000). History and philosophy of science through models: some challenges in the case of ‘the atom’. International Journal of Science Education, 22(9), 993–1009.

    Article  Google Scholar 

  • Kruschke, J. K. (2005). Category learning. In K. Lamberts & R. L. Goldstone (Eds.), The handbook of cognition (pp. 183–201). London: Sage.

    Google Scholar 

  • Kvale, S. (1996). InterViews: an introduction to qualitative research interviewing. Thousand Oaks: Sage.

    Google Scholar 

  • Lakoff, G. (1987). The death of dead metaphor. Metaphor and Symbolic Activity, 2(2), 143–147.

    Article  Google Scholar 

  • Lakoff, G., & Johnson, M. (1980a). Conceptual metaphor in everyday language. The Journal of Philosophy, 77(8), 453–486.

    Article  Google Scholar 

  • Lakoff, G., & Johnson, M. (1980b). The metaphorical structure of the human conceptual system. Cognitive Science, 4(2), 195–208.

    Article  Google Scholar 

  • Lawson, A. E. (1994). Research on the acquisition of scientific knowledge: epistemological foundations of cognition. In D. L. Gabel (Ed.), Handbook of research on science teaching and learning (pp. 131–176). New York: MacMillan.

    Google Scholar 

  • Leach, J. T., & Scott, P. H. (2008). Teaching for conceptual understanding: an approach drawing upon individual and sociocultural perspectives. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 647–675). New York: Routledge.

    Google Scholar 

  • Loewenstein, J., Thompson, L., & Gentner, D. (2003). Analogical learning in negotiation teams: comparing cases promotes learning and transfer. Academy of Management Learning and Education, 2(2), 119–127.

    Article  Google Scholar 

  • McCloskey, M., Carmazza, A., & Green, B. (1980). Curvilinear motion in the absence of external forces: naïve beliefs about the motion of objects. Science, 210, 1139–1141.

    Article  Google Scholar 

  • McDermott, L. C. (1990). A view from physics. In M. Gardner, J. G. Greeno, F. Reif, A. H. Schoenfeld, A. A. diSessa, & E. Stage (Eds.), Toward a scientific practice of science education (pp. 3–30). Hillsdale: Larwence Erlbaum Associates.

    Google Scholar 

  • Meitner, L., & Frisch, O. R. (1939). Disintegration of uranium by neutrons: a new type of nuclear reaction. Nature, 143, 239–240.

    Article  Google Scholar 

  • Muldoon, C. A. (2006). Shall I compare thee to a pressure wave? Visualisation, analogy, insight and communication in physics. Bath: University of Bath.

    Google Scholar 

  • Nersessian, N. J. (2008). Creating scientific concepts. Cambridge: The MIT Press.

    Google Scholar 

  • Nicoll, G. (2001). A report of undergraduates' bonding misconceptions. International Journal of Science Education, 23(7), 707–730.

    Article  Google Scholar 

  • Petri, J., & Niedderer, H. (1998). A learning pathway in high-school level quantum atomic physics. International Journal of Science Education, 20(9), 1075–1088.

    Article  Google Scholar 

  • Piaget, J. (1972). The principles of genetic epistemology. London: Routledge & Kegan Paul (W. Mays, Trans.).

    Google Scholar 

  • Podolefsky, N. (2008). Analogical scaffolding: making meaning in physics through representation and analogy. University of Colorado.

  • QCA. (2007a). The new secondary curriculum: what has changed and why? London: Qualification and Curriculum Authority.

    Google Scholar 

  • QCA. (2007b). Science: programme of study for key stage 4. London: Qualifications and Curriculum Authority.

    Google Scholar 

  • Rutherford, L. (1934). The transmutation of the atom. The Scientific Monthly, 38(1), 15–23.

    Google Scholar 

  • Rutledge, M. L., & Warden, M. (2000). Evolutionary theory, the nature of science and high school biology teachers: critical relationships. American Biology Teacher, 62, 23–31.

    Article  Google Scholar 

  • Schmidt, H.-J. (1991). A label as a hidden persuader: chemists' neutralization concept. International Journal of Science Education, 13(4), 459–471.

    Article  Google Scholar 

  • Smith, J. P., diSessa, A. A., & Roschelle, J. (1993). Misconceptions reconceived: a constructivist analysis of knowledge in transition. The Journal of the Learning Sciences, 3(2), 115–163.

    Article  Google Scholar 

  • Southerland, S. A., Abrams, E., Cummins, C. L., & Anzelmo, J. (2001). Understanding students' explanations of biological phenomena: conceptual frameworks or p-prims? Science Education, 85(4), 328–348.

    Article  Google Scholar 

  • Sugarman, S. (1987). Piaget's construction of the child's reality. Cambridge: Cambridge University Press.

    Google Scholar 

  • Taber, K. S. (1995). Development of student understanding: a case study of stability and lability in cognitive structure. Research in Science & Technological Education, 13(1), 87–97.

    Article  Google Scholar 

  • Taber, K. S. (1998a). An alternative conceptual framework from chemistry education. International Journal of Science Education, 20(5), 597–608.

    Article  Google Scholar 

  • Taber, K. S. (1998b). The sharing-out of nuclear attraction: or I can't think about physics in chemistry. International Journal of Science Education, 20(8), 1001–1014.

    Article  Google Scholar 

  • Taber, K. S. (2000). Case studies and generalisability—grounded theory and research in science education. International Journal of Science Education, 22(5), 469–487.

    Article  Google Scholar 

  • Taber, K. S. (2001). When the analogy breaks down: modelling the atom on the solar system. Physics Education, 36(3), 222–226.

    Article  Google Scholar 

  • Taber, K. S. (2002a). Chemical misconceptions—prevention, diagnosis and cure: classroom resources (vol. 2). London: Royal Society of Chemistry.

    Google Scholar 

  • Taber, K. S. (2002b). Chemical misconceptions—prevention, diagnosis and cure: theoretical background (vol. 1). London: Royal Society of Chemistry.

    Google Scholar 

  • Taber, K. S. (2003a). The atom in the chemistry curriculum: fundamental concept, teaching model or epistemological obstacle? Foundations of Chemistry, 5(1), 43–84.

    Article  Google Scholar 

  • Taber, K. S. (2003b). Understanding ionisation energy: physical, chemical and alternative conceptions. Chemistry Education: Research and Practice, 4(2), 149–169.

    Article  Google Scholar 

  • Taber, K. S. (2005). Learning quanta: barriers to stimulating transitions in student understanding of orbital ideas. Science Education, 89(1), 94–116.

    Article  Google Scholar 

  • Taber, K. S. (2007). Classroom-based research and evidence-based practice: a guide for teachers. London: Sage.

    Google Scholar 

  • Taber, K. S. (2008). Exploring conceptual integration in student thinking: evidence from a case study. International Journal of Science Education, 30(14), 1915–1943.

    Article  Google Scholar 

  • Taber, K. S. (2009a). College students' conceptions of chemical stability: the widespread adoption of a heuristic rule out of context and beyond its range of application. International Journal of Science Education, 31(10), 1333–1358.

    Article  Google Scholar 

  • Taber, K. S. (2009b). Progressing science education: constructing the scientific research programme into the contingent nature of learning science. Dordrecht: Springer.

    Google Scholar 

  • Taber, K. S. (2010). Straw men and false dichotomies: overcoming philosophical confusion in chemical education. Journal of Chemical Education, 87(5), 552–558.

    Article  Google Scholar 

  • Taber, K. S. (2011). Patterns in nature: challenging secondary students to learn about physical laws. Physics Education, 46(1), 80–89.

    Article  Google Scholar 

  • Taber, K. S., & Watts, M. (1996). The secret life of the chemical bond: students' anthropomorphic and animistic references to bonding. International Journal of Science Education, 18(5), 557–568.

    Article  Google Scholar 

  • Thagard, P. (1992). Analogy, explanation, and education. Journal of Research in Science Teaching, 29(6), 537–544.

    Article  Google Scholar 

  • The National Strategies Secondary. (2009). Strengthening teaching and learning of energy: quantitative model of energy transfer. London: Department for Children, Schools and Families.

    Google Scholar 

  • Treagust, D. F. (2007). General instructional methods and strategies. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 379–391). Mahwah: Larwence Erlbaum Associates.

    Google Scholar 

  • Watts, M., & Gilbert, J. K. (1983). Enigmas in school science: students' conceptions for scientifically associated words. Research in Science and Technological Education, 1(2), 161–171.

    Article  Google Scholar 

  • Watts, M., & Zylbersztajn, A. (1981). A survey of some children's ideas about force. Physics Education, 16(6), 360–365.

    Article  Google Scholar 

  • Zohar, A., & Ginossar, S. (1998). Lifting the taboo regarding teleology and anthropomorphism in biology education— Heretical suggestions. Science Education, 82(6), 679–697.

    Article  Google Scholar 

Download references

Acknowledgments

The work reported here is based upon materials developed during the Royal Society of Chemistry's Teacher Fellowship project on Challenging Chemical Misconceptions in the Classroom (https://camtools.cam.ac.uk/wiki/eclipse/RSCTFProject.html). Thanks are due to the teachers who administered the probe, as well as the students who completed it.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith S. Taber.

Appendix: The diagnostic instrument

Appendix: The diagnostic instrument

figure afigure a

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taber, K.S. Upper Secondary Students' Understanding of the Basic Physical Interactions in Analogous Atomic and Solar Systems. Res Sci Educ 43, 1377–1406 (2013). https://doi.org/10.1007/s11165-012-9312-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11165-012-9312-3

Keywords

Navigation