Skip to main content

Advertisement

Log in

Junior High School Students’ Ideas about the Shape and Size of the Atom

  • Published:
Research in Science Education Aims and scope Submit manuscript

Abstract

The concept of the atom is one of the building blocks of science education. Although the concept is a foundation for students’ subsequent learning experiences, it is difficult for students to comprehend because of common misconceptions and its abstractness. The purpose of this study is to examine junior high school students’ (ages 12–13) ideas about the shape and size of the atom and the evolution of these ideas over 2 years. The study’s sample size was 126 students, including 76 sixth-grade and 50 seventh-grade students. The educational curriculum and relevant literature guided the development of a questionnaire that consisted of three open-ended questions intended to determine students’ knowledge of the structure and physical properties of the atom. After administering the questionnaire, collected data were analysed qualitatively. The study shows that students had difficulty developing a mental image of the atom, and contrary to the conclusions of other studies, students demonstrated a preference for working with complex and abstract models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Graph 1
Graph 2

Similar content being viewed by others

References

  • Bachelard, S. (1979). Quelques aspects historiques des notions de modèle et de justification de modèles. In P. Delattre & M. Thellier (Eds.), Actes du colloque Elaboration et justification des modèles. Paris: Maloine.

    Google Scholar 

  • Barlet, R., & Plouin, D. (1994). La dualité microscopique-macroscopique un obstacle sous-jacent aux difficultés en chimie dans l’enseignement universitaire. Aster, 25, 142–173.

    Google Scholar 

  • Barquero, B. (1995). La representacio n de estados mentales en la comprension de textos desde el enfoque teorico de los modelos mentales. Doctoral Thesis. Madrid: Universidad Autonoma de Madrid.

    Google Scholar 

  • Ben-Zvi, R., Eylon, B., & Silberstein, J. (1988). Theories, principles and laws. Educion in Chemistry, 25, 89–92.

    Google Scholar 

  • Bissuel, G. (2001). Et si la physique était symbolique? Paris: PUFC.

    Google Scholar 

  • Brehelin, D., Cross, D., & Sivade, A. (1994). Images spontanées et induites par l’enseignement du concept “atome” pour les élèves de collège. Bulletin de l’Union des Physiciens, 763, 711–729.

    Google Scholar 

  • Charlet-Brehelin, D. (1998). Contribution à l’enseignement - apprentissage du concept d’atome au collège. Thèse: Université Montpellier II.

    Google Scholar 

  • Cokelez, A. (2005). The register of models—atom; molecule; ion; chemical bond—in the teaching of the matter and its transformations at Upper Secondary School level (grades 10–12): from reference knowledge to acquired knowledge. France: University Victor Segalen (Bordeaux II).

    Google Scholar 

  • Cokelez, A. (2009). Students’ (Grade 7–9) Ideas On Particle Concept: Didactical Transposition. Hacettepe University Journal of Faculty of Education, 36, 64–75.

    Google Scholar 

  • Cokelez, A. (2010). A Comparative Study of French and Turkish Students (grades 11–12) Ideas on Acid – Base Reactions. Journal of Chemical Education, 87(1), 102–106.

    Article  Google Scholar 

  • Cokelez, A., & Dumon, A. (2005). Atom and molecule: upper secondary school French students’ representations in long-term memory. Chemistry Education Research and Practice, 6(3), 119–135.

    Article  Google Scholar 

  • Cokelez, A., Dumon, A., & Taber, K. S. (2008). Uper secondary French students, the chemical transformation and the models register. International Journal of Science Education, 30(6), 807–836.

    Article  Google Scholar 

  • Coll, R. K., & Treagust, D. F. (2001). Learners’ mental models of chemical bonding. Research in Science Education, 31, 357–382.

    Article  Google Scholar 

  • de Kleer, J., & Brown, J. (1983). Assumptions and ambiguities in mechanistic mental models. In D. Gentner & A. Stevens (Eds.), mental models (pp. 155–190). Hillsdale, N.J: Lawrence Erlbaum Associates.

    Google Scholar 

  • de Vos, W., & Verdonk, A. H. (1996). The particulate nature of matter in science education in science. Journal of Research in Science Teaching, 3(6), 657–664.

    Article  Google Scholar 

  • del Pozo, R. M. (2001). Prospective teacher’ ideas about the relationships between concepts describing the composing of matter. International Journal of Science Education, 23(4), 353–371.

    Article  Google Scholar 

  • Drouin, A.-M. (1988). Le modèle en questions. Aster, 7, 1–20.

    Google Scholar 

  • Drouin, A.-M., & Astolfi, J.-P. (1992). La modélisation à l’école élémentaire, in. INRP, Paris: Enseignement et apprentissage de la modélisation en science.

    Google Scholar 

  • Genzling, J.-C., & Pierrard, M.-A. (1994). La modélisation, la description, la conceptualisation, l’explication et la prédiction, in Nouveau regards sur l’enseignement et l’apprentissage de la modélisation en sciences. Paris: INRP.

    Google Scholar 

  • Gilbert, J.K., (1997), Exploring models and modeling in science and technology education, Reading: New Bulmershe Papers.

  • Gilbert, J. K., Pietrocola, M., & Zylbersztajn, A. (2000). Science and Educationl: Notions of Reality, Theory and Model, In Developing models in science education. Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Greca, I. M., & Moreira, M. A. (2000). Mental models, conceptual models, and modelling. International Journal of Science Education, 22, 1–11.

    Article  Google Scholar 

  • Griffiths, K. A., & Preston, R. K. (1992). Grade-12 students’ misconceptions relating to fundamental characteristics of atoms and molecules. Journal of Research in Science Teaching, 29(6), 611–628.

    Article  Google Scholar 

  • Grosslight, K., Unger, C., Jay, E., & Smith, C. (1991). Understanding models and their use in science: Conception of middle and high school students and experts. Journal of Research in Science Teaching, 29, 799–822.

    Article  Google Scholar 

  • Harrison, A. G., & Treagust, D. F. (1996). Secondary students’ mental models of atoms and molecules: Implications for teaching chemistry. Science Education, 80(5), 509–534.

    Article  Google Scholar 

  • Harrison, A. G., & Treagust, D. F. (2000). Learning about atoms, molecules, and chemical bonds: A case study of multiple-model use in grade 11 chemistry. Science Education, 84(3), 352–381.

    Article  Google Scholar 

  • Host, V. (1989). Système et modèles: quelques repères bibliographiques. Aster, 8, 187–209.

    Google Scholar 

  • Keig, F. P., & Rubba, A. P. (1993). Translation of representations of the structure of matter and its relationship to reasoning, gender, spatial reasoning, and specific prior knowledge. Journal of Research in Science Teaching, 30(8), 883–903.

    Article  Google Scholar 

  • Lee, O., Eichinger, C. D., Anderson, W. C., Berkheimer, D. G., & Blakeslee, D. T. (1993). Changing middle school students’ conceptions of matter and molecules. Journal of Research in Science Teaching, 30(3), 249–270.

    Article  Google Scholar 

  • Martinand, J.-L., (1990), In J. Colomb et J.-L. Martinand: Enseignement et apprentissage de la modélisation, Rapport RCP INRP-LIREST. (p.116) Document multigraphié, Lirest. Paris, Université Paris 7.

  • MEB. (2005a). 6th Grade Primary science and technology curriculum. Ankara: MEB. Yayınları.

    Google Scholar 

  • MEB. (2005b). 7th Grade Primary science and technology curriculum. Ankara: MEB. Yayınları.

    Google Scholar 

  • Paton, R. C. (1996). On a apparently simple modeling problem in biology. International Journal of Science Education, 18(1), 55–64.

    Article  Google Scholar 

  • Robardet, G. & Guillaud, J.-C., (1994), Eléments d’épistémologie et de didactique des sciences physiques, De la recherche à la pratique, Tome 1, Publication de l’IUFM de Grenoble.

  • Taber, K. S. (1998). An alternative conceptual framework from chemistry education. International Journal of Science Education, 20(5), 597–608.

    Article  Google Scholar 

  • Treagust, D. F., Chittleborough, G., & Mamila, T. L. (2002). Students’ understanding of the role of scientific models in learning science. International Journal of Science Education, 24(4), 357–368.

    Article  Google Scholar 

  • Tsaparlis, G. (1997). Atomic and molecular structure in chemical education. Journal of Chemical Education, 74(8), 922–925.

    Article  Google Scholar 

  • Unlu, P. (2010). Pre-service physics teachers’ ideas on size, visibility and structure of the atom. European Journal of Physics, 31, 881–892.

    Article  Google Scholar 

  • Walliser, B. (1977). Systèmes et modèles, introduction critique à l’analyse de systèmes. Paris: Seuil.

    Google Scholar 

  • White, R., & Gunstone, R. (1992). Probing understanding. London: The Falmer Press.

    Google Scholar 

  • Yildirim, A., & Simsek, H. (2005). Sosyal Bilimlerde Nitel Araştırma Yöntemleri. Ankara: Seçkin Yayıncılık.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aytekin Cokelez.

Appendix

Appendix

A: Questionnaire items

  1. 1.

    If you could examine an atom with all its details under a powerful microscope, what would you see? Show what you would see with a diagram.

  2. 2.

    How big are atoms?

  3. 3.

    Compare the size of an atom with something you know.

B: Tables prepared based on students’ responses

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cokelez, A. Junior High School Students’ Ideas about the Shape and Size of the Atom. Res Sci Educ 42, 673–686 (2012). https://doi.org/10.1007/s11165-011-9223-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11165-011-9223-8

Keywords

Navigation