Skip to main content
Log in

Oxidation-induced catalytic performance of heterostructured Ni-TiO2 nanoparticles and formation of Leuco-Methylene blue

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Ni-TiO2 catalysts have been successfully developed by simple sol–gel techniques with variations in Ni2+ concentration. The reduced bandgap suggests the appearance of the intragap various localized defect states and oxygen vacancies. The formation of oxygen vacancies and its effect on photocatalysis with the presence of the colour centres (F, F+, F++) in the photocatalytic mechanism by replacement of anion vacancy and electron pair displacement are discussed. The low concentration (0.02 M) of Ni2+ doping represents a large amount of oxygen vacancy, which assures the high capability of visible light absorbance. The chemical reaction mechanism of oxidation/hydrogenation-induced photocatalytic behaviour through formation of Leuco-MB is also established. The design of anatase/rutile heterostructure and the proposed mechanism of Schottky induced charge transfer phenomenon under visible light irradiation are also embedded in our work. In comparison with many other early reports, our results show that the 0.02 M concentration of Ni2+ doping has an outstanding photocatalytic activity with complete decolouration with evolution of Leuco-methylene blue and thus obtained 100% total degradation of toxic MB compounds from the aqueous solution after just only 30 min of visible light illumination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. L. Yuan, X.H. Lu, X. Xiao, T. Zhai, J. Dai, F. Zhang, C. Hu, ACS Nano 6, 656 (2012)

    Article  CAS  PubMed  Google Scholar 

  2. C. Li, C. Koenigsmann, W. Ding, B. Rudshteyn, K.R. Yang, K.P. Regan, J.H. Kim, J. Am. Chem. Soc. 137, 1520 (2015)

    Article  CAS  PubMed  Google Scholar 

  3. D.F. Ollis, E. Pelizzetti, N. Serpone, Environ. Sci. Technol. 25, 1522 (1991)

    Article  CAS  Google Scholar 

  4. P. Piccinini, C. Minero, M. Vincenti, E. Pelizzetti, J. Chem. Soc. Faraday Trans. 93, 1993 (1997)

    Article  CAS  Google Scholar 

  5. B.R. Eggins, F.L. Palmer, J.A. Byrne, Water Res. 31, 1223 (1997)

    Article  CAS  Google Scholar 

  6. M. Xing, Y. Wu, J. Zhang, F. Chen, Nanoscale 2, 1233 (2010)

    Article  CAS  PubMed  Google Scholar 

  7. J. Choi, H. Park, M.R. Hoffmann, J. Phys. Chem. C. 114, 783 (2010)

    Article  CAS  Google Scholar 

  8. J.H. Park, S. Kim, A.J. Bard, Nano Lett. 6, 24 (2006)

    Article  CAS  PubMed  Google Scholar 

  9. J. Cao, Y. Zhang, H. Tong, P. Li, T. Kako, J. Ye, ChemComm 48, 8649 (2012)

    CAS  Google Scholar 

  10. T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, J. Phys. Chem. Solids 63, 1909 (2002)

    Article  CAS  Google Scholar 

  11. R.Y.O.J.I. Asahi, T.A.K.E.S.H.I. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269 (2001)

    Article  CAS  PubMed  Google Scholar 

  12. M. Batzill, E.H. Morales, U. Diebold, Phys. Rev. Lett. 96, 026103 (2006)

    Article  PubMed  Google Scholar 

  13. D.V. Lang, L.C. Kimerling, Phys. Rev. Lett. 33, 489 (1974)

    Article  CAS  Google Scholar 

  14. J. Wang, P. Liu, X. Fu, Z. Li, W. Han, X. Wang, Langmuir 25, 1218 (2009)

    Article  CAS  PubMed  Google Scholar 

  15. Y. Lv, C. Pan, X. Ma, R. Zong, X. Bai, Y. Zhu, Appl. Catal. B 138, 26 (2013)

    Article  Google Scholar 

  16. Y. Lv, Y. Zhu, Y. Zhu, J. Phys. Chem. C 117, 18520 (2013)

    Article  CAS  Google Scholar 

  17. M. Kong, Y. Li, X. Chen, T. Tian, P. Fang, F. Zheng, X. Zhao, J. Am. Chem. Soc. 133, 16414 (2011)

    Article  CAS  PubMed  Google Scholar 

  18. C.A. Páez, D. Poelman, J.P. Pirard, B. Heinrichs, Appl. Catal. B 94, 263 (2010)

    Article  Google Scholar 

  19. B. Guan, J. Yu, S. Guo, S. Yu, S. Han, Nanoscale Adv. 2, 1352 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. I. Ganesh, A.K. Gupta, P.P. Kumar, P.S.C. Sekhar, K. Radha, G. Padmanabham, G. Sundararajan, Sci. World J. 2012, 1–16 (2012)

    Article  Google Scholar 

  21. T. Sakthivel, K.A. Kumar, J. Senthilselvan, K. Jagannathan, J. Mater. Sci.: Mater. Electron 29, 2228 (2018)

    CAS  Google Scholar 

  22. D. Kang, J. Li, Y. Zhang, Materials 13, 1302 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  23. D.M. Collins, M. Mostafavi, R.I. Todd, T. Connolley, A.J. Wilkinson, Acta Mater. 90, 46 (2015)

    Article  CAS  Google Scholar 

  24. A. Rinaldi, P. Peralta, K. Sieradzki, E. Traversa, S. Licoccia, J. Nanomech, Micromech. 2, 42 (2012)

    Article  Google Scholar 

  25. P. Jones, J.A. Hockey, J. Chem. Soc. Faraday Trans. 67, 2679 (1971)

    Article  CAS  Google Scholar 

  26. H.P. Boehm, Adv. Catal. 16, 179 (1966)

    CAS  Google Scholar 

  27. Y.J. Lin, Y.H. Chang, W.D. Yang, B.S. Tsai, J. Non-Cryst, Solids 352, 789 (2006)

    CAS  Google Scholar 

  28. Y. Wang, Y. Hao, H. Cheng, J. Ma, B. Xu, W. Li, S. Cai, J. Mater. Sci. 34, 2773 (1999)

    Article  CAS  Google Scholar 

  29. X. Shu, J. He, D. Chen, Ind. Eng. Chem. Res. 47, 4750 (2008)

    Article  CAS  Google Scholar 

  30. D.H. Kim, H.S. Park, K. Sun-Jae, K.S. Lee, Catal. Lett. 106, 29 (2006)

    Article  CAS  Google Scholar 

  31. A.Y. Kuznetsov, R. Machado, L.S. Gomes, C.A. Achete, V. Swamy, B.C. Muddle, V. Prakapenka, Appl. Phys. Lett. 94, 193117 (2009)

    Article  Google Scholar 

  32. C. Rath, P. Mohanty, A.C. Pandey, N.C. Mishra, J. Phys. D Appl. Phys. 42, 205101 (2009)

    Article  Google Scholar 

  33. H.C. Choi, S.R. Ryu, H. Ji, S.B. Kim, I. Noda, Y.M. Jung, J. Phys. Chem. B 114, 10979 (2010)

    Article  PubMed  Google Scholar 

  34. Y.H. Yang, X.Y. Chen, Y. Feng, G.W. Yang, Nano Lett. 7, 3879 (2007)

    Article  CAS  PubMed  Google Scholar 

  35. N.W. Wang, Y.H. Yang, G.W. Yang, J. Phys. Chem. C 113, 15480 (2009)

    Article  CAS  Google Scholar 

  36. B. Cao, W. Cai, H. Zeng, Appl. Phys. Lett. 88, 161101 (2006)

    Article  Google Scholar 

  37. A. Schildknecht, R. Sauer, K. Thonke, Phys. B: Condens. Matter. 340, 205 (2003)

    Article  Google Scholar 

  38. H. Kato, M. Sano, K. Miyamoto, T. Yao, Jpn. J. Appl. Phys. 42, 2241 (2003)

    Article  CAS  Google Scholar 

  39. F. Leiter, H. Alves, D.P. Sterer, N.G. Romanov, D.M. Hofmann, B.K. Meyer, Physica B 201, 340 (2003)

    Google Scholar 

  40. R. Yu, X. Zhang, X. Huang, Res. Chem. Intermed. 48, 3259 (2022)

    Article  CAS  Google Scholar 

  41. A.S. Hassanien, A.A. Akl, J. Alloys Compd. 648, 280 (2015)

    Article  CAS  Google Scholar 

  42. W. Kallel, S. Bouattour, L.V. Ferreira, A.B. Do Rego, Mater. Chem Phys. 114, 304 (2009)

    Article  CAS  Google Scholar 

  43. C. Rath, P. Mohanty, A.C. Pandey, N.C. Mishra, J. Phys. D: Appl. Phys. 42, 205101 (2009)

    Article  Google Scholar 

  44. W. Dai, J. Long, L. Yang, S. Zhang, Y. Xu, X. Luo, S. Luo, J. Energy Chem. 61, 281 (2021)

    Article  CAS  Google Scholar 

  45. L. Yang, J. Guo, J. Zhang, S. Zhang, W. Dai, X. Xiao, S. Luo, Chem. Eng. J. 427, 131550 (2022)

    Article  CAS  Google Scholar 

  46. D. Li, J. Hua, R. Wang, Z. Tian, Res. Chem. Intermed. 48, 3335 (2022)

    Article  CAS  Google Scholar 

  47. M. Naeem, S.K. Hasanain, M. Kobayashi, Y. Ishida, A. Fujimori, S. Buzby, S.I. Shah, Nanotechnology 17, 2675 (2006)

    Article  CAS  PubMed  Google Scholar 

  48. C. An, S. Peng, Y. Sun, Adv. Mater. 22, 2570 (2010)

    Article  CAS  PubMed  Google Scholar 

  49. G.G. Nakhate, V.S. Nikam, K.G. Kanade, S. Arbuj, B.B. Kale, J.O. Baeg, Mater. Chem. Phys. 124, 976 (2010)

    Article  CAS  Google Scholar 

  50. R.R. Bhosale, S.R. Pujari, M.K. Lande, B.R. Arbad, S.B. Pawar, A.B. Gambhire, Appl. Surf. Sci. 261, 835 (2012)

    Article  CAS  Google Scholar 

  51. M. Sabarinathan, S. Harish, J. Archana, M. Navaneethan, H. Ikeda, Y. Hayakawa, RSC Adv. 7, 24754 (2017)

    Article  CAS  Google Scholar 

  52. Y. Yang, T. Zhang, L. Le, X. Ruan, P. Fang, C. Pan, J. Wei, Sci. Rep. 4, 1 (2014)

    Article  CAS  Google Scholar 

  53. F. Wang, S. Min, Y. Han, L. Feng, Superlattices Microstruct. 48, 170 (2010)

    Article  CAS  Google Scholar 

  54. K. Kogo, H. Yoneyama, H. Tamura, J. Phys. Chem. A 84, 1705 (1980)

    Article  CAS  Google Scholar 

  55. A. Bouddouch, E. Amaterz, B. Bakiz, F. Guinneton, A. Taoufyq, S. Villain, A. Benlhachemi, Res. Chem. Intermed. 48, 3315–34 (2022)

    Article  CAS  Google Scholar 

  56. D.C. Hurum, A.G. Agrios, K.A. Gray, T. Rajh, M.C. Thurnauer, J. Phys. Chem. B 107, 4545 (2003)

    Article  CAS  Google Scholar 

  57. D.O. Scanlon, C.W. Dunnill, J. Buckeridge, S.A. Shevlin, A.J. Logsdail, S.M. Woodley, A.A. Sokol, Nat. Mater. 12, 798 (2013)

    Article  CAS  PubMed  Google Scholar 

  58. T. Ohno, K. Sarukawa, M. Matsumura, New J. Chem. 26, 1167 (2002)

    Article  CAS  Google Scholar 

  59. H. Xu, P. Reunchan, S. Ouyang, H. Tong, N. Umezawa, T. Kako, J. Ye, Chem. Mater. 25, 405 (2013)

    Article  CAS  Google Scholar 

  60. C. Chen, L. Xu, G.A. Sewvandi, T. Kusunose, Y. Tanaka, S. Nakanishi, Q. Feng, Cryst. Growth Des. 14, 5801 (2014)

    Article  CAS  Google Scholar 

  61. B. Isik, V. Ugraskan, F. Cakar, O. Yazici, Res. Chem. Intermed. 1 (2022)

  62. X. Liu, C. Xu, C. Xiao, Y. Tang, X. Chen, Y. Chen, X. Wang, Res. Chem. Intermed. 1 (2022). https://doi.org/10.1007/s11164-022-04747-0

  63. Y.N. Liu, X. Zhou, X. Wang, K. Liang, Z.K. Yang, C.C. Shen, A.W. Xu, RSC Adv. 7, 30080 (2017)

    Article  CAS  Google Scholar 

  64. A.S. Vishwanathan, R. Devkota, S. Siva Sankara Sai, G. Rao, Applied. Appl. Biochem. Biotechnol. 177, 1767 (2015)

    Article  CAS  Google Scholar 

  65. J. He, Y.E. Du, Y. Bai, J. An, X. Cai, Y. Chen, Q. Feng, Molecules 24, 2996 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  66. T.A. Kandiel, A. Feldhoff, L. Robben, R. Dillert, D.W. Bahnemann, Chem. Mater. 22, 2050 (2010)

    Article  CAS  Google Scholar 

  67. D. Chen, Z. Jiang, J. Geng, Q. Wang, D. Yang, Ind. Eng. Chem. Res. 46, 2741 (2007)

    Article  CAS  Google Scholar 

  68. Y. Gong, P. Zhang, X. Xu, Y. Li, H. Li, Y. Wang, J. Catal. 297, 272 (2013)

    Article  CAS  Google Scholar 

  69. E. Haque, J.W. Jun, S.N. Talapaneni, A. Vinu, S.H. Jhung, J. Mater. Chem. 20, 10801 (2010)

    Article  CAS  Google Scholar 

  70. L. Lu, J. He, P. Wu, Y. Wu, Y. Chao, H. Li, W. Zhu, Green Chem. 20, 4453 (2018)

    Article  CAS  Google Scholar 

  71. P. Zhang, Y. Gong, H. Li, Z. Chen, Y. Wang, Nat. Commun. 4, 1 (2013)

    Google Scholar 

  72. A. Sankaran, K. Kumaraguru, B. Balraj, J. Inorg. Organomet. Polym. Mater. 31, 151 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are very much thankful to Petroleum Engineering Department, IIT (ISM) Dhanbad, for supplying the FTIR facility. We are also very much glad to CRF, IIT (ISM) Dhanbad, for FESEM and UV–Vis absorbance characterizations. IIT (ISM), Dhanbad, supports the financial issue. We are also thankful to CIF, IIT Kanpur, for contributing XRD facility. DST-FIST facility (project no. SR/FST/PSI-004/2013) is also obliged for the utilization of the PL instrument in IIT (ISM) Dhanbad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazi Hasibur Rahman.

Ethics declarations

Conflicts of interest

There are no conflicts of interest to discuss.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 336 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, K.H., Kar, A.K. & Chen, KC. Oxidation-induced catalytic performance of heterostructured Ni-TiO2 nanoparticles and formation of Leuco-Methylene blue. Res Chem Intermed 48, 4475–4501 (2022). https://doi.org/10.1007/s11164-022-04838-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-022-04838-y

Keywords

Navigation