Skip to main content
Log in

Improved adsorption and desorption behavior of Cd on thiol-modified bentonite grafted with cysteamine hydrochloride

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Clay adsorbents are considered an inexpensive and readily available solution for removing heavy metals, including cadmium, from the environment to reduce pollution. In this study, thiol-modified bentonite (SH-Bent) was prepared by grafting cysteamine hydrochloride onto natural bentonite (Bent). The effects of pH, equilibrium contact time, and temperature on the adsorption–desorption behavior of Cd2+ were studied, and adsorption isotherm models were applied to examine the adsorption behavior of SH-bent. SH-Bent demonstrated better performance and stability for Cd2+ adsorption than Bent. SH-Bent exhibited an enhanced adsorption capacity for Cd2+ at equilibrium of 49.3 mg/g at pH 6, 120 min, and 303 K, which was 42-fold higher than that of Bent under the same conditions. An investigation of the desorption behavior of Cd2+ adsorbed on Bent and SH-Bent in simulated acid rain revealed that SH-Bent has high stability, with a desorption rate of 5.73% at pH 4.5, 60 min, and 303 K, which was much lower than that demonstrated by Bent under the same conditions (45.68%). The Langmuir equation was the best-fitted adsorption isotherm model, closely followed by the Freundlich, Tempkin, and Dubinin–Radushkevich models. A significant difference in diffusion was observed between the two types of clay according to the intraparticle diffusion model. The adsorption–desorption processes of SH-Bent and Bent fit the pseudo-second-order model best among the five kinetic models examined. The information provided in this study can be used to apply thiol-modified clay for wastewater treatment or for the removal of cadmium from soil.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

\(q_{e}\) :

Adsorption capacity at equilibrium (mg/g)

\(q_{t}\) :

Amount of Cd2+ adsorbed per unit mass of adsorbent at any time t (mg/g)

\(Q_{e}\) :

Amount of Cd2+ desorption per unit mass of adsorbent at any time t (mg/g)

\(C_{e}\) :

Equilibrium concentration of Cd2+ in solution (mg/L)

\(C_{0}\) :

Initial concentration of the Cd2+ solution (mg/L)

\(V\) :

The volume of the Cd2+solution (mL)

\(m\) :

Amount of adsorbent used (g)

\(\eta_{e}\) :

The percentage removal of Cd2+

\(Q_{m}\) :

Maximum adsorption at monolayer coverage (mg/g)

\(K_{L}\) :

The intensity of adsorption (L/mg)

\(K_{F}\) :

Freundlich isotherm constant related to adsorption capacity ((mg/g) (L/mg)1/n)

\(n_{F}\) :

Freundlich isotherm constant related to adsorption intensity

\(A_{T}\) :

Tempkin adsorption potential (L/mg)

\(B_{T}\) :

Tempkin isotherm energy constant (dimensionless)

\(b_{T}\) :

Tempkin heat of adsorption (kJ/mol)

\(\varepsilon\) :

Polanyi potential

\(\gamma\) :

D–R adsorption energy constant (mol2/kJ2)

\(K_{2}\) :

The rate constant of second-order adsorption (g/mg min)

\(E\) :

Adsorption energy (kJ/mol)

\(t\) :

Time (min)

\(\tau\) :

Surface coverage (desorption constant).

\(a\) :

Rate of chemisorption (initial adsorption rate)

\(R^{2}\) :

Correlation coefficient

\(b\) :

Constant related to the extent of adsorption (L/mg)

\(R\) :

Gas constant (J/mol K)

\(T\) :

Absolute temperature (K)

References

  1. L. Yao, L. Zhang, R. Wang, J. Hazard. Mater. 301, 462 (2016)

    Article  CAS  PubMed  Google Scholar 

  2. X.L. Zhao, T. Jiang, B. Du, Chemosphere 99(3), 41 (2014)

    Article  CAS  PubMed  Google Scholar 

  3. Z. Shen, X. Fan, D. Hou, F. Jin, Chemosphere 233, 149 (2019)

    Article  CAS  PubMed  Google Scholar 

  4. H.B. Hadjltaief, A. Sdiri, W. Ltaief, C. R. Chimie. 21(3–4), 253 (2018)

    Article  CAS  Google Scholar 

  5. C. Chen, H. Liu, T. Chen, D. Chen, Appl. Clay Sci. 118, 239 (2015)

    Article  CAS  Google Scholar 

  6. N. Karapinar, R. Donat, Desalination 249(1), 123 (2009)

    Article  CAS  Google Scholar 

  7. L. Tran, P. Wu, Y. Zhu, S. Liu, N. Zhu, Appl. Surf. Sci. 356(30), 91 (2015)

    Article  CAS  Google Scholar 

  8. A. Gil, L. Santamaría, S.A. Korili, J. Environ. Chem. Eng. 9(5), 105808 (2021)

    Article  CAS  Google Scholar 

  9. M. Ghiaci, M.E. Sedaghat, H. Aghaeia, A. Gil, J. Chem. Technol. Biot. 84(12), 1908 (2010)

    Article  CAS  Google Scholar 

  10. D.Z. Rahman, J. Vijayaraghavan, J. Thivya, Biomass. Convers. Bior. 2, 1 (2021)

    Google Scholar 

  11. L. Nie, P. Chang, S. Liang, C. Eng. Technol. 4, 100167 (2021)

    Google Scholar 

  12. Y. Nuhoğlu, Z.E. Kul, S. Kul, Int. J. Environ. Sci. Te. 2, 2975 (2021)

    Article  CAS  Google Scholar 

  13. K.G. Bhattacharyya, S.S. Gupta, Desalination 272(1–3), 66 (2011)

    Article  CAS  Google Scholar 

  14. V.E. Anjos, J.R. Rohwedder, S. Cadore, Appl. Clay Sci. 99, 289 (2014)

    Article  CAS  Google Scholar 

  15. F.H. Nascimento, J.C. Masini, J. Environ. Manage. 143, 1 (2014)

    Article  PubMed  CAS  Google Scholar 

  16. J.K. Guo, L. Wang, Y.L. Tu, J. Environ. Chem. Eng. 9, 10663 (2021)

    Google Scholar 

  17. E. Eren, J. Hazard. Mater. 165(1–3), 63 (2009)

    Article  CAS  PubMed  Google Scholar 

  18. Y. Wang, S. Li, H. Yang, J. Soil Sediment. 19(15), 1767 (2019)

    Article  CAS  Google Scholar 

  19. T.S. Anirudhan, M. Ramachandran, J. Colloid Interf. Sci. 299(1), 116 (2006)

    Article  CAS  Google Scholar 

  20. Y. Liu, M. Gao, Z. Gu, J. Hazard. Mater. 267, 71 (2014)

    Article  CAS  PubMed  Google Scholar 

  21. M. Ghiaci, H. Aghaeia, Appl. Clay Sci. 43(3–4), 289 (2009)

    Article  CAS  Google Scholar 

  22. M. Ghiaci, H. Aghaeia, Appl. Clay Sci. 43(3–4), 308 (2009)

    Article  CAS  Google Scholar 

  23. M.E. Sedaghat, M. Ghiaci, H. Aghaei, Appl. Clay Sci. 46(2), 125 (2009)

    Article  CAS  Google Scholar 

  24. Y. Wang, T. He, D. Yin, Ecotox. Environ. Safe. 204, 111121 (2020)

    Article  CAS  Google Scholar 

  25. Y. Fei, C. Liu, F. Li, J. Geochem. Explor. 176, 2 (2017)

    Article  CAS  Google Scholar 

  26. V.P. Dinh, M.D. Ngugen, Chemosphere. 257, 127147 (2020)

    Article  CAS  PubMed  Google Scholar 

  27. H. Long, P. Wu, N. Zhu, Chem. Eng. J. 225, 237 (2013)

    Article  CAS  Google Scholar 

  28. D.A. Skoog, Principles of Instrumental Analysis, 7th edn. (Cengage Learning, Boston, 2018), p. 287

    Google Scholar 

  29. V.P. Dinh, P.T. Ngugen, Chemosphere 266, 131766 (2021)

    Google Scholar 

  30. S. Li, P. Wu, J. Hazard. Mater. 173(1–3), 62 (2010)

    Article  CAS  PubMed  Google Scholar 

  31. X. Ni, Z. Li, Y. Wang, Front. Chem. 6, 390 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. R. Hua, Z. Li, Chem. Eng. J. 249, 189 (2014)

    Article  CAS  Google Scholar 

  33. E. Zolotoyabko, Basic Concepts of X-ray Diffraction, 1st edn. (John Wiley & Sons, Germany, 2014), p. 435

    Google Scholar 

  34. R. Guinebretiere, X-ray Diffraction by Polycrystalline Materials, 1st edn. (John Wiley Professio, London, 2007), pp. 345

  35. U. Kuila, M. Prasad, Geophys. Prospect. 61(2), 341 (2013)

    Article  Google Scholar 

  36. D. Qin, X. Niu, M. Qiao, G. Liu, H. Li, Appl. Surf. Sci. 333, 170 (2015)

    Article  CAS  Google Scholar 

  37. J. Fan, C. Cai, J. Hazard. Mater. 388, 122037 (2020)

    Article  CAS  PubMed  Google Scholar 

  38. J. Vijayaraghavan, D. Zunaithur Rahman, J. Thivya, Desalin. Water. Treat. 209, 254 (2021)

    Article  CAS  Google Scholar 

  39. Z. Zhu, C. Gao, Y. Wu, L. Sun, Bioresource Technol. 147, 378 (2013)

    Article  CAS  Google Scholar 

  40. J.A. Dean, Lange’s Handbook of Chemistry, 15th edn. (McGraw-Hill, America, 1999)

  41. K.O. Adebowale, I.E. Unuabonah, B.I. Olu-Owolabi, J. Hazard. Mater. 134(1–3), 130 (2006)

    Article  CAS  PubMed  Google Scholar 

  42. K.G. Bhattacharyya, S.S. Gupta, Adv. Colloids Interface Sci. 140, 114 (2008)

    Article  CAS  Google Scholar 

  43. L.A.S.J. Carvalho, R.A. Konzen, A.C.M. Cunha, J. Environ. Chem. Eng. 7(6), 103496 (2019)

    Article  CAS  Google Scholar 

  44. P. Wu, W. Wu, S. Li, N. Xing, J. Hazard. Mater. 169(1–3), 824 (2009)

    Article  CAS  PubMed  Google Scholar 

  45. H. Lui, X. Zhu, M. Han, Nonmetallic Ores. 36(3), 4 (2013)

    Google Scholar 

  46. G.A. Neves, Materials. 14, 5688 (2021)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. D.D. Giri, J.M. Jha, A.K. Tiwari, Environ. Pollut. 280(1), 116890 (2021)

    Article  CAS  PubMed  Google Scholar 

  48. L.D. Pablo, M.L. Chávez, M. Abatal, Chem. Engin. J. 171(3), 1276 (2011)

    Article  CAS  Google Scholar 

  49. B. Nagwa, S. Mahmoud, Minerals 6(4), 129 (2016)

    Google Scholar 

  50. M. Stefan, D.S. Stefan, Rev. Chim. 60, 1169 (2009)

    CAS  Google Scholar 

  51. L. Wang, X. Li, D.C.W. Tsang, F. Jin, J. Hazard. Mater. 387, 2200510 (2020)

    Google Scholar 

  52. Y. Liu, H. Li, X.H. Zhu, Sep. Sci. Technol. 45(2), 277 (2010)

    Article  CAS  Google Scholar 

  53. S. Wang, W. Lao, RSC Adv. 11, 35673 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. S.M. Dal Bosco, R.S. Jimenez, Adsorption 12(2), 133 (2006)

    Article  CAS  Google Scholar 

  55. C.O. Ijagbemi, M. Baek, D.S. Kim, J. Hazard. Mater. 174(1–3), 746 (2010)

    Article  CAS  PubMed  Google Scholar 

  56. D. Wang, X. Jiang, W. Rao, Ecol. Complex. 6(4), 432 (2009)

    Article  Google Scholar 

  57. V. Masindi, W.M. Gitari, J. Clean Prod. 112(1), 1077 (2016)

    Article  CAS  Google Scholar 

  58. W. Liu, C. Zhao, S. Wang, Res. Chem. Intermed. 44(3), 1441 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the financial support of the Guizhou Provincial Science and Technology Foundation (No. 20201Y182).

Author information

Authors and Affiliations

Authors

Contributions

HQ and CL involved in conceptualization and methodology; RS took part in validation, investigation, writing—original draft; ZL and WL involved in software;YA and ML took part in resources; RS and HQ involved in writing—review & editing.

Corresponding author

Correspondence to Haoli Qin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, R., Li, Z., Li, W. et al. Improved adsorption and desorption behavior of Cd on thiol-modified bentonite grafted with cysteamine hydrochloride. Res Chem Intermed 48, 2721–2744 (2022). https://doi.org/10.1007/s11164-022-04711-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-022-04711-y

Keywords

Navigation