Skip to main content

Advertisement

Log in

Magnetic nitrogen-doped carbon derived from silk cocoon biomass: a promising and sustainable support for copper

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In this study, a magnetic nitrogen-doped carbon-based copper (MNC-Cu) catalyst was fabricated so that natural silk cocoons undergo thermal processes and then activate by combining with Fe3O4 MNPs as a suitable substrate for placement copper metal. The efficiency of the generated catalyst in the synthesis of 5-substituted 1H-tetrazole derivatives was evaluated by the [3 + 2] cycloaddition reaction of aromatic aldehydes, azide ions, and hydroxylamines. FT-IR, FE-SEM, EDS, TEM, XRD, TGA, and VSM techniques have been adopted to identify and validate this heterogeneous catalyst. The observation from EDS, elemental mapping, XRD, and FT-IR analysis confirms the immobilization of Cu metals on the MNC surface and uniform distribution of species and then no aggregation occurs during functionalization. VSM results show the magnetic feature of fabricated catalyst, and based on the leaching test, the amount of catalyst leaching was negligible. Moreover, this reaction is a one-pot multicomponent reaction (MCRs) or more precisely a one-pot, three-component reaction, which is one of the advantages of this work. The fabricated catalyst shows high efficiency, good stability, and considerable reactivity in synthesizing 5-substituted 1H-tetrazole derivatives. So it can be seen that the fabricated magnetic catalyst is a useful and practical catalyst for synthesizing [3 + 2] cycloaddition reactions. Reusability and recyclability for five sequential runs without notable increase and reduction in activity are other advantages. In addition, the magnetic properties of this heterogeneous catalyst led to easy and quickly recovered and striking copper leaching.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Scheme 3
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and material

My manuscript has data included as supplementary electronic material.

References

  1. S. Gopi, K. Giribabu, M. Kathiresan, ACS Omega 3, 6251 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. B. Karimi, H. Barzegar, H. Vali, Chem. Commun. 54, 7155 (2018)

    Article  CAS  Google Scholar 

  3. B. Sakintuna, Y. Yürüm, Ind. Eng. Chem. Res. 44, 2893 (2005)

    Article  CAS  Google Scholar 

  4. F. Bai, Y. Xia, B. Chen, H. Su, Y. Zhu, Carbon N. Y. 79, 213 (2014)

    Article  CAS  Google Scholar 

  5. Z. Lan, Y. Fang, Y. Zhang, X. Wang, Angew. Chemie 130, 479 (2018)

    Article  Google Scholar 

  6. J. Lee, J. Kim, T. Hyeon, Adv. Mater. 18, 2073 (2006)

    Article  CAS  Google Scholar 

  7. M.J. Bojdys, J. Jeromenok, A. Thomas, M. Antonietti, Adv. Mater. 22, 2202 (2010)

    Article  CAS  PubMed  Google Scholar 

  8. R. Wang, K. Wang, Z. Wang, H. Song, H. Wang, S. Ji, J. Power Sources 297, 295 (2015)

    Article  CAS  Google Scholar 

  9. X.-H. Li, M. Antonietti, Chem. Soc. Rev. 42, 6593 (2013)

    Article  CAS  PubMed  Google Scholar 

  10. X. Chen, Y.S. Jun, Chem. Mater 21, 150 (2009)

    Google Scholar 

  11. S.Y. Cho, Y.S. Yun, S. Lee, D. Jang, K.-Y. Park, J.K. Kim, B.H. Kim, K. Kang, D.L. Kaplan, H.-J. Jin, Nat. Commun. 6, 1 (2015)

    CAS  Google Scholar 

  12. P. Zhang, Y. Gong, H. Li, Z. Chen, Y. Wang, Nat. Commun. 4, 1 (2013)

    Google Scholar 

  13. P.E. Ingham, J. Appl. Polym. Sci. 15, 3025 (1971)

    Article  CAS  Google Scholar 

  14. M.-M. Titirici, M. Antonietti, Chem. Soc. Rev. 39, 103 (2010)

    Article  CAS  PubMed  Google Scholar 

  15. H.-S. Kim, S.H. Yoon, S.-M. Kwon, H.-J. Jin, Biomacromol 10, 82 (2009)

    Article  CAS  Google Scholar 

  16. R. Nazarov, H.-J. Jin, D.L. Kaplan, Biomacromol 5, 718 (2004)

    Article  CAS  Google Scholar 

  17. C. Fu, Z. Shao, and V. Fritz, Chem. Commun. 45, 6515 (2009)

    Article  Google Scholar 

  18. H.-W. Liang, S. Brüller, R. Dong, J. Zhang, X. Feng, K. Müllen, Nat. Commun. 6, 1 (2015)

    Google Scholar 

  19. H.H. Kim, M.K. Kim, K.H. Lee, Y.H. Park, I.C. Um, Int. J. Biol. Macromol. 79, 943 (2015)

    Article  PubMed  Google Scholar 

  20. D. Lardizábal-G, Y. Verde-Gómez, I. Alonso-Lemus, A. Aguilar-Elguezabal, Int. J. Hydrogen Energy 40, 17300 (2015)

    Article  Google Scholar 

  21. Z. Heidarinejad, M.H. Dehghani, M. Heidari, G. Javedan, I. Ali, M. Sillanpää, Environ. Chem. Lett. 18, 393 (2020)

    Article  CAS  Google Scholar 

  22. H. Tounsadi, A. Khalidi, M. Farnane, M. Abdennouri, N. Barka, Process Saf. Environ. Prot. 102, 710 (2016)

    Article  CAS  Google Scholar 

  23. Z. Hezarkhani, A. Shaabani, Appl. Organomet. Chem. 31, e3624 (2017)

    Article  Google Scholar 

  24. Y. Zhu, W. Sun, J. Luo, W. Chen, T. Cao, L. Zheng, J. Dong, J. Zhang, M. Zhang, Y. Han, Nat. Commun. 9, 1 (2018)

    Article  Google Scholar 

  25. J. Wang, S. Kaskel, J. Mater. Chem. 22, 23710 (2012)

    Article  CAS  Google Scholar 

  26. M. Ma, Q. Zhang, D. Yin, J. Dou, H. Zhang, H. Xu, Catal. Commun. 17, 168 (2012)

    Article  CAS  Google Scholar 

  27. M.A. Bodaghifard, J. Organomet. Chem. 886, 57 (2019)

    Article  CAS  Google Scholar 

  28. Q. Du, W. Zhang, H. Ma, J. Zheng, B. Zhou, Y. Li, Tetrahedron 68, 3577 (2012)

    Article  CAS  Google Scholar 

  29. A. Marandi, N. Koukabi, Colloids Surf. A Physicochem. Eng. Asp. 621, 126597 (2021)

    Article  CAS  Google Scholar 

  30. A. Marandi, E. Nasiri, N. Koukabi, F. Seidi, Int. J. Biol. Macromol. 190, 61 (2021)

    Article  CAS  PubMed  Google Scholar 

  31. C.W. Lim, I.S. Lee, Nano Today 5, 412 (2010)

    Article  CAS  Google Scholar 

  32. P. Akbarzadeh, N. Koukabi, Appl. Organomet. Chem. 34, e5395 (2020)

    CAS  Google Scholar 

  33. P. Akbarzadeh, N. Koukabi, Appl. Organomet. Chem. 35, e6039 (2021)

    Article  CAS  Google Scholar 

  34. A. Marandi, N. Koukabi, M.A. Zolfigol, Res. Chem. Intermed. 47, 3145 (2021)

    Article  CAS  Google Scholar 

  35. P. Akbarzadeh, N. Koukabi, E. Kolvari, Mol. Divers. 24(2), 319 (2019)

    Article  PubMed  Google Scholar 

  36. P. Akbarzadeh, N. Koukabi, E. Kolvari, Res. Chem. Intermed. 45, 1009 (2019)

    Article  CAS  Google Scholar 

  37. M. Esmaeilpour, A.R. Sardarian, H. Firouzabadi, Appl. Organomet. Chem. 32, e4300 (2018)

    Article  Google Scholar 

  38. M. Abdollahi-Alibeik, A. Moaddeli, New J. Chem. 39, 2116 (2015)

    Article  CAS  Google Scholar 

  39. M.M. Heravi, A. Fazeli, H.A. Oskooie, Y.S. Beheshtiha, H. Valizadeh, Synlett 23, 2927 (2012)

    Article  CAS  Google Scholar 

  40. M. Sridhar, K.K.R. Mallu, R. Jillella, K.R. Godala, C.R. Beeram, N. Chinthala, Synthesis (Stuttg). 45, 507 (2013)

    Article  CAS  Google Scholar 

  41. S. Behrouz, J. Saudi Chem. Soc. 21, 220 (2017)

    Article  CAS  Google Scholar 

  42. J. Sun, Z. Zhang, J. Ji, M. Dou, F. Wang, Appl. Surf. Sci. 405, 372 (2017)

    Article  CAS  Google Scholar 

  43. T. Altun, E. Pehlivan, Food Chem. 132, 693 (2012)

    Article  CAS  Google Scholar 

  44. V. Sahu, S. Grover, B. Tulachan, M. Sharma, G. Srivastava, M. Roy, M. Saxena, N. Sethy, K. Bhargava, D. Philip, Electrochim. Acta 160, 244 (2015)

    Article  CAS  Google Scholar 

  45. K.M. Khan, I. Fatima, S.M. Saad, M. Taha, W. Voelter, Tetrahedron Lett. 57, 523 (2016)

    Article  CAS  Google Scholar 

  46. B. Mitra, S. Mukherjee, G.C. Pariyar, P. Ghosh, Tetrahedron Lett. 59, 1385 (2018)

    Article  CAS  Google Scholar 

  47. U.B. Patil, K.R. Kumthekar, J.M. Nagarkar, Tetrahedron Lett. 53, 3706 (2012)

    Article  CAS  Google Scholar 

  48. S.D. Guggilapu, S.K. Prajapti, A. Nagarsenkar, K.K. Gupta, B.N. Babu, Synlett 27, 1241 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge the Research Council of Semnan University for supporting this work.

Funding

Semnan University, Grant Recipient: Dr. Nadiya Koukabi, Associated Professor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadiya Koukabi.

Ethics declarations

Conflict of interest

All authors are aware of the submission and agree to its publication and have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1551 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahmasbi, M., Akbarzadeh, P. & Koukabi, N. Magnetic nitrogen-doped carbon derived from silk cocoon biomass: a promising and sustainable support for copper. Res Chem Intermed 48, 1383–1401 (2022). https://doi.org/10.1007/s11164-021-04623-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-021-04623-3

Keywords

Navigation